1) pizzato diluthe

General Catalogue Detection

1
Company Profile

1 New products 2015-2016

i-	e-
0 -	
-	\%
4	\%

2 Position switches for heavy duty applications

FD series

FL series

- 39

FP series
-29

FC series
-49

3 Position switches for normal duty applications with or without reset

4 Prewired modular position switches

NA-NB series

- 119

NF series

- 129

5 Microswitches

MK series
-143

6 Switches for special applications

7 Accessories

8 Appendix

Utilization requirements $\quad 235$
Contact blocks $\quad 247$

Connectors 255
Introduction to Safety $\quad 261$
Technical concepts

- 283

Alphanumeric Table of Contents $\quad 287$
General Sales Terms

- 293

200 PASSIONATE PROFESSIONALS

It is people, with their professionalism and dedication that make a great company. This profound conviction has always guided Pizzato Elettrica in their choice of employees and collaborators. Today, Giuseppe and Marco Pizzato lead a tireless team providing the fastest and most efficient response to the demands of the market. This team has grown since the year 2000 and has achieved a considerable increase in business in all the countries where Pizzato Elettrica is present.

The various strategic sectors of the business are headed by professionals with significant experience and expertise. Many of these people have developed over years with the company.

Others are experts in their specific field and have integrated personal experience with the Pizzato Elettrica ethos to extend the company's capability and knowledge.

From the design office to the technical assistance department, from managers to workers, every employee believes in the company and its future. Pizzato Elettrica employees all give the best of themselves secure in the knowledge they are the fundamental elements of a highly valuable enterprise.

100\% MADE IN ITALY

An entrepreneurial company such as Pizzato Elettrica, which has grown day after day thanks to the "culture of doing" of a family that benefited from approaching its work with tenacity, intelligence and far-sightedness, has its foundations in a system of solid and deeply-shared values. The pillars that form the basis of the company's work have remained constant and constitute Pizzato Elettrica's fundamental guiding principles.

- TERRITORIAL ROOTS. Pizzato Elettrica is a successful example of the ripe entrepreneurship that characterises the North-East of Italy and Veneto in particular, an area that is tellingly referred to as "Italy's locomotive". The territory is highly productive in every sector, from agriculture to high technology, and makes a fundamental contribution to the generation of Italian wealth; where 100 is the average per capita value added produced at the national level, the figure here has consistently been between 110 and 135 . The productivity rate is among the highest in Europe and originates from a tradition of diffuse and markedly export-oriented entrepreneurship.
- ORIENTATION TO EXCELLENCE. Innovation and development: this company philosophy is at the heart of the operations and product quality assessments that Pizzato Elettrica performs in a 360 degree manner, and is also manifest in the heightened propensity for research and innovation that characterises its design work. Every product development in Pizzato Elettrica is born with the aim of bringing a secure, reliable and innovative choice to the market: those using Pizzato Elettrica products do so in the certainty that they are of certified quality as fruits of a process that is scrupulously controlled at every stage.
- ATTENTION TO THE CLIENT. In order to be successful, a product must respond to the specific needs of those who will use it: quality alone is not enough. Market developments must be carefully monitored so that one can understand, in advance, which new applications will prove truly useful. This is why Pizzato Elettrica has always cultivated close synergies with the companies that choose it as a supplier, using this continuous dialogue to identify the potential developments of its product
 range so as to render it highly flexible, complete and able to offer optimal solutions to diverse needs.

1984: AN ENTREPRENEURIAL STORY BEGINS

16 NOVEMBER 1984. This is the date that marks the beginning of a long entrepreneurial story: the story of a family that was able to build a company and allow it to grow consistently, one step at a time, to reach important results, guided by a profound work ethic and a marked spirit of initiative.

- 80s. The company was initially called Pizzato, owned by the Pizzato B. \& C. general partnership with headquarters in Marostica. It was immediately able to assert itself on the market thanks to the quality of its products. In the short space of four years, the firm had already developed to the point of making a fundamental upgrade: on 18 April 1988, it became Ltd. company and was re-named Pizzato Elettrica, a brand shortly destined to become renowned and appreciated nationwide. During the year 1988, its first company-owned plant, geared towards mechanical processing, was built. By the end of the decade, thanks to the development of quality products and the experience built on the Italian market, Pizzato Elettrica turned to the international market: in 1989, the commercialisation of products was extended to the USA.
- 90 s. The range of products continued to be upgraded and specialised with the introduction of new machinery and the growing input of technology. In 1994, Pizzato Elettrica introduced its first line of prewired switches with immediate success. 1996 and 1997 were important years in the development of safety devices, a sector that became strategic when new European directives on working environments were introduced. Pizzato Elettrica immediately became an Italian leader in this regard, thanks to its evolved safety switches and switches with solenoid. Meanwhile (1995), its second plant, geared towards the moulding of plastic materials, was also born. The brand was now ready to approach the new frontiers of the international market: South Africa in 1995 and Australia in 1997. As a confirmation of its innovative spirit, Pizzato Elettrica was among the first companies to believe in the strong potential of the Web, presenting itself online with a well-constructed and multi-functional site as early as 1996. This exciting, constant growth culminated in 1998 with the construction of the third plant, dedicated to the assembly department.
- 00s. The new millennium heralded the search for quality certifications: the ISO 9002 was achieved in April 2000, followed by the ISO 9001 achieved in November 2002. In the meanwhile, technological evolution continued: in 2000, the design studio began using 3D CAD systems. This allowed new avant garde product models to be developed, such as safety modules (2002) and switches conforming to the European ATEX directives (2005), laid out for equipment operating in potentially explosive environments.
In 2006, the HP switch, the result of an innovative engineering design project combining safety and style in a single product, was introduced to the market.
In 2007, the company extended its range of products for machine safety, introducing two new series of magnetic safety sensors, suitable for the monitoring of protections and repairs.
The initial months of 2009 have witnessed the introduction of the new prewired modular switches NA-NB-NF series.
In 2010 Pizzato Elettrica introduced the new EROUND line control and signalling devices, therefore remarkably widening its offer within the man-machine interface sector.
In 2011, the first pre-programmed safety modules of the GEMNIS CS MF series are introduced.
In 2012, the company integrates its offering in the machine safety field, thanks to the ST series sensors with RFID technology and to the programmable safety modules of the GEMNIS CS MP series.
In 2013, the range of hinge safety switches was expanded with the AISI 316L stainless steel HX switches.
2014 saw the launch on the market of the RFID safety switches with NG series block and of the safety handle of the P-KUBE 2 line for NG series switches.
Thanks to the robust interlocking system, the NG series switches ensure a maximum locking force of the Fzh actuator that is equivalent to 7500 N .
The new safety handle P-KUBE 2, which is installed in combination with the RFID safety switch with NG series block, provides an integrated locking system of the protections with related access control to dangerous areas.

59,000,000 PARTS SOLD WORLDWIDE

Pizzato Elettrica's product catalogue contains about 7,000 items, with more than 1,300 special codes developed for devices personalised according to clients' specific needs.
Pizzato Elettrica devices can be grouped, according to typology, into three main macro-categories:

- POSITION SWITCHES. They are installed on a daily basis on any type of industrial machinery, for applications in the wood, metal, plastic, elevators, automotive, naval sectors, etc. In order to be used in a such wide variety of sectors and countries, Pizzato Elettrica position switches are made to be assembled in a lot of configurations thanks to the various body shapes, dozens of contact blocks, hundreds of actuators and materials, forces, assembling versions.
The product range that Pizzato Elettrica can offer in the field of position switches is one of the widest in the world. Moreover, the use of high quality materials, high reliability technologies as twin bridge contact blocks and the protection degree IP67, make this range of position switches one of the most technologically evolved.
Furthermore since 2005 Pizzato Elettrica has also started to produce versions of its switches with specific features for some sectors as follows: switches with ATEX homologations and switches for high temperature.
- SAFETY DEVICES. The company Pizzato Elettrica has been one of the first Italian companies developing dedicated items for this sector, creating and patenting dozens of innovative products, so becoming one of the main European manufacturers of safety devices. The wide range of specific products for machine safety completely designed and assembled in our company premises in Marostica (VI), has been widened by the introduction of coded magnetic sensors, switches with solenoid provided with anti-panic release device, hinged safety switches and new safety handles. Recent products include the RFID safety sensors of the ST series, the stainless steel hinge safety switches of the HX series, the RFID switches with block of the NG series, and the safety handle of the P-KUBE 2 line.
- MAN-MACHINE INTERFACE. Thanks to the recent introduction of the EROUND control and signalling devices, Pizzato Elettrica considerably widens its offer in the man-machine interface sector.
The new design, the attention to details and the elegance of the product combined with its maximum safety and reliability, take the series to the forefront of the market.
The wide range that our Company offers in the manmachine interface sector includes single and modular foot switches with many patented joint kits.

In order to satisfy its customers' needs and requests, Pizzato Elettrica offers a lot of accessories purposely designed not only to complete its wide range of products, but also to help their installations on machineries.

140 NEW PROJECTS COMPLETED

There's a key word in the development of latest-generation devices: Mechatronics. This new science has grown in recent years, reaching some of the most important research centres, both national and international, right here in Veneto. It is based on the fusion of the principles of Mechanics with those of Electronics in the design of instruments that guarantee great precision, high performance, versatility and constant improvement.

This is why, in recent years, all new models have indeed been created following careful Mechatronics studies, undertaken directly by the highly specialised technicians and engineers that form part of the R\&D department.

The evolution of Pizzato Elettrica's product lines thus proceeds on a double platform: on one side, there are the internally-researched innovative materials and technologies; on the other, the particular needs that emerge from continuous dialogue with big competitors and, above all, clients. Indeed, requests for specific personalisations of a product are quite common: Pizzato Elettrica's duty is to respond to these needs as best it can, guaranteeing maximum flexibility and openness with regards to 'custom made' projects too.

10 MILLION CERTIFIED PRODUCT CODES

A simple brand isn't enough: the company is aiming for the Pizzato Elettrica brand to be widely recognised as a synonym for absolute quality and certainty.

A result that has been reached and consolidated over the years, updating and expanding the series of certifications obtained from the most important Italian and international control organs. Product quality is assessed by five accredited external bodies: IMQ, UL, CCC, TÜV SÜD, EAC. These bodies lay out high technical and qualitative standards for the company to achieve and maintain, verified yearly with seven different inspections: these are performed, without prior notice, by qualified inspectors, who extract samples of products and materials destined for sale from plants, or from the market directly, to subject them to apposite tests.

- CE MARK. All Pizzato Elettrica products bear the CE mark, in concordance with the European Directives.
- ISO 9001 CERTIFICATION. The company's production system conforms with national UNI EN ISO 9001 and international ISO 9001 standards. The certification covers all of the company's plants and their production and managerial activities: entry checks, technical, purchasing and commercial department activities, manufacturing operations assessments, final pre-shipping product tests and checks, equipment reviews and the management of the metrological lab.
- CERTIFICATION OF COMPANY QUALITY SYSTEMS. Pizzato Elettrica has obtained the certificate of compliance with the UNI EN ISO 9000 regulations in force in Italy and abroad. It is issued by a recognised independent body that guarantees the quality and reliability of the service offered to clients worldwide.
- CSQ, CISQ AND IQNET. The CSQ system is part of the CISQ (Italian Certification of Quality Systems) federation, which consists of the primary certification bodies operating in Italy and its various product sectors. CISQ is the Italian representative within IQNet, the biggest international Quality Systems and Company Management certification network, which is adhered to by 25 certification organs in as many countries.

140 REGISTERED PATENTS

The fact that Pizzato Elettrica has, over 30 years, been able to take on a leadership role at the European level is also a result of continuous research and innovation, which its labs and internal design studios undertake on a daily basis.

This is a strategic sector that is exploited to the maximum thanks to a constant process of innovation: indeed, this undoubtedly represents the most important value added. This is why, on average, Pizzato Elettrica develops innovative projects to be covered by international patents each year: a route that the company has been following since its birth, immediately understanding the importance of registering and protecting ideas in order to approach the market with the added strength of being truly 'different' from its competitors.

The company's ideas are what have distinguished it and allowed it to come to occupy a highly important market position, through the tens of patents that have been developed and registered. An ever evolving know-how that is renewed daily, as demonstrated, for example, by the more recent innovations introduced in the safety device sector. This field is due to change significantly in the coming years through profound technological developments: a path that Pizzato Elettrica once again intends to take before time, outlining new principles destined to respond to the international market trends of the future.

20,800 HOURS DEDICATED TO RESEARCH PER YEAR

Behind every new product lies a careful research and design process that aims to find technologically advanced solutions that can improve the device.

This evolution would not have been possible if Pizzato Elettrica hadn't acquired increasingly well-adapted instruments over time, thus keeping pace with the latest technological frontiers. In this sense, the number of computers used daily within the company is particularly significant: an average of almost one computer per employee (workers included!) represents an exhaustive index of a highly computerised company.

The design effort utilises the most evolved 3D CAD software; the efficiency of the Electrical and Mechanical labs, which operate in strict synergy, allows for immediate assessments to be undertaken for the development and perfection of every functional aspect of the prototypes.

The switches undergo the most thorough of checks, which evaluate their efficiency in extreme conditions too: this ensures that Pizzato Elettrica's clients will have access to a genuinely safe, reliable product.

Measurements are taken using over 200 precision tools, which allow for every single component and every characteristic of the finished products to be evaluated: from measures of humidity and temperature to weight and force, to electrical levels, flammability, mechanical duration, magnetic characteristics, microscopic surveys, the level of IP protection and EMC electromagnetic compatibility.

1,000 TECHNICAL SUPPORT ANSWERS PER MONTH

Pizzato Elettrica sees itself as a company that is as attentive to customers needs as it is to the development of its products.
This is why significant resources have always been dedicated to the development of the technical assistance service, giving the company the role of a highly qualified technological partner that is able to fully support technicians and designers.

Pizzato Elettrica offices can be contacted by telephone from Monday to Friday and offer both information and advice relating to the choice of products, the technical characteristics and the correct installation, ensuring to the customers a direct technical assistance service.

WWW.PIZZATO.COM

Pizzato Elettrica was one of the first Italian firms of its sector to believe in Internet, developing a web site since 1996.
Pizzato Elettrica website is now available in four languages (Italian, English, French, and German) and it includes plenty of technical data, technical information and news about products and services provided by the company.

- General Catalogue
- Certificates, brochures and leaflets of new products
- Search engine for codes
- List of new products
- Form to require technical and commercial information
- Article cross reference
- Frequently asked questions (FAQ)
- Company profile
- List of trade fairs
- Download 2D CAD drawings in DXF format
- Download 3D CAD drawings in STEP format
- Download Pizzato Elettrica libraries for the SISTEMA software
- Video section with installation examples
- Section dedicated to Machine Safety, explanations of standards and prescriptions for product operation
- Quick News section, with all the latest news on products and services by Pizzato Elettrica
- Newsletter

MORE THAN 40 MEETINGS ORGANISED EACH YEAR

EXHIBITIONS

Pizzato Elettrica regularly participates to many trade fairs in Italy and abroad, presenting in this way to the market the products, the latest news, etc.

MEETINGS

Pizzato Elettrica, in addition to offering a qualified technical assistance, sees itself as dynamic company attentive to customers needs organising several meetings and training courses, with a particular focus on machinery safety standards.

MULTILINGUAL DOCUMENTATION

Pizzato Elettrica provides to its customers a wide range of technical documentation available in several languages: Italian, English, German, French, Turkish, etc.
From the general catalogue to the detailed brochures, from leaflets of new products to price lists and CD-ROM, Pizzato Elettrica customers can find in a quick and exact way all the information concerning products, the technical characteristics and functionality, the proper installation, application examples, etc.

77,000 PACKAGES SHIPPED PER YEAR

In order to be able to bring its products to distributors and clients operating all over the world, Pizzato Elettrica's guiding principles are speed and efficiency.

These objectives informed the company's creation of a computerised merchandise transfer system, which is managed automatically by an appositely developed company software that is geared towards specific operational needs.

Over 77,000 parcels are sorted by the logistic center each year: a significant volume of merchandise reflecting the needs of an evermore rapid and competitive market.

All shipments and transfers are traced via a barcode system that can immediately identify the contents of any parcel. A pre-arranged system that is easily modulated: this flexibility has also proved key in providing a quick response to particularly urgent shipment requests.

Among the strengths in the company relationship with the commercial network, the direct assistance guaranteed in six languages: Italian, English, French, German, Spanish and Chinese. A service that confirms Pizzato Elettrica quality and attention to customers needs from around the world.

TECHNICAL AND COMMERCIAL SERVICE

TECHNICAL OFFICES
Pizzato Elettrica technical offices provide a direct technical and qualified assistance in Italian and English, helping in this way the customers to choose the suitable product for their own application explaining the characteristics and the correct installation.

Office hours: from Monday to Friday
08.00-12.00 / 14.00-18.00 CET
phone:
+39.0424.470.930
fax:
+39.0424.470.955
e-mail:
tech@pizzato.com
Spoken languages
\square NI

SALES OFFICES

Among the strengths in the company relationship with the commercial network, the direct assistance guaranteed in six languages: Italian, English, French, German, Spanish and Chinese. A service that confirms Pizzato Elettrica quality and attention to customers needs from around the world.

Office hours:	from Monday to Friday
	$08.00-12.00 / 14.00-18.00$ CET
phone:	+39.0424 .470 .930
fax:	+39.0424 .470 .955
e-mail:	info@pizzato.com

Position switches restyling FD series

- New anthracite grey colour
- Indelible laser marking
- Cover integrated seal
- Protection degree IP67
- Non-loosable cover screws

Position switches restyling FP series

- Stainless steel plates for fixing screws
- New anthracite grey colour
- Cover and non-loosable cover screw
- Indelible laser marking
- Protection degree IP67

Position switches restyling FL series

- New anthracite grey colour
- Indelible laser marking
- Cover integrated seal
- Protection degree IP67
- Non-loosable cover screws

Position switches restyling FC series

- New anthracite grey colour
- Indelible laser marking
- Cover integrated seal
- Protection degree IP67
- Non-loosable cover screw

In conformity with standard EN ISO 14119

- All products are compliant with standard EN ISO 14119
- The classifications of the devices have been included in each series in accordance with the new standard
- New safety screws OneWay and Torx, for a correct installation according to the EN ISO 14119 anti-tampering directive

M20 / M16
 New metric thread

- All catalogue products with metric thread

- Warehouse handling of the metric products
- All accessories are available with metric thread
- M20 or M16 threads depending on the product series

M12 connectors available for the FC series

- M12 4- or 5-pole connectors also available for the FC compact series
- Pre-installed metal or plastic connectors
- IP67 protection grade connectors
- For rapid replacement without wiring errors

New type approvals

- New EAC certification for the Russian Customs Union
- Simplified export for Russia, Belarus, and Kazakistan
- New IMQ type-approval for MK series microswitches
- The IMQ type-approval also certifies the positive opening of the MK series

Description

> Pizzato Elettrica position switches are daily installed in every type of industrial machinery all over the world for applications in the sector of wood, metal, plastic, automotive, packaging, lifting, medicinal, naval, etc.
In order to be used in a such wide variety of sectors and countries, Pizzato Elettrica position switches are made to be assembled in a lot of configurations thanks to the various body shapes, dozens of contact blocks, hundreds of actuators and materials, forces, assembling versions.
The product range that Pizzato Elettrica can offer in the field of position switches is one of the widest in the world. Moreover, the use of high quality materials, high reliability technologies as twin bridge contact blocks and the protection degree IP67, make this range of position switches one of the most technologically evolved.

Protection degree IP67

These devices are designed to be used in the toughest environmental conditions and they pass the IP67 immersion test according to IEC 60529. They can therefore be used in all environments where the maximum protection of the housing is required.

Laser engraving

All devices are indelibly marked with a dedicated laser system that allows the marking to be also suitable for extreme environments. This system that does not use labels, prevents the loss of plate data and the marking is more resistant over time.

Extended temperature range

$-40^{\circ} \mathrm{C}$
This range of switches is also available in a special version with an ambient operating temperature range of $-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$.
They can be used for applications in cold stores, sterilisers and other devices with low temperature environments. Special materials that have been used to realize these versions, maintain unchanged their features also in these conditions, widening the installation possibilities.

Overturning levers

For switches with swivelling lever the lever can be fastened straight or reversed, maintaining the positive coupling.
This makes it possible to have two different work plans of the lever.

Adjustable safety lever

The code 56 adjustable lever (and variants) has a notching that prevents the sliding also in case the retaining screw becomes loose.
The particular positive locking makes it suitable for safety applications.

Increased or reduced actuating force

For actuators with swivelling levers, versions with increased or reduced actuating force are available on request. This feature allows selection of a switch perfectly tailored for the application. For further information contact the Technical Department.

Independent contacts

The contact block 16 has two NC contacts, both with positive opening activated independently according to the lever turning direction.

Unidirectional heads

For switches with swivelling lever, it is possible to select the unidirectional operation by removing the four screws of the head and revolving the internal plunger (contact block 16 excluded),

Gold-plated contacts

The contact blocks of these devices can be supplied gold-plated upon request. It is ideal for all applications with low voltages or currents and it ensures greater contact reliability. The high-thickness coating > 1 micron ensures the mechanical endurance of the coating over time.

Stainless steel fixing plates

The technopolymer switches of the FP series come with two robust stainless steel fixing plates. This solution makes it possible to avoid the underhead washer and ensures that the fixing of the switch is more stable over time.

Contact blocks

Contact blocks with captive screws, finger protection, twin bridge contacts and double interruption for a higher contact reliability. Available in multiple variants with shifted activation strokes, which can be simultaneous or overlapping. They are suitable for different kinds of applications.

Stainless steel external metallic parts

AISI 304
Upon request some of these devices can be supplied with stainless steel external metallic parts instead of the usual zinc-plated steel. It is an ideal solution for environments with the presence of aggressive chemical agents or saline mist. See page 219.

Selection diagram

product options
accessory sold separately

Code structure Attention! The feasibility of a code number does not mean the effective availability of a product. Please contact our sales office.

Main features

- Metal housing, one conduit entry
- Protection degree IP67
- 17 contact blocks available
- 28 actuators available
- Versions with M12 connector
- Versions with gold-plated silver contacts

Technical data

Housing

Metal housing, baked powder coating
One threaded conduit entry:
Protection degree:
M20x1.5 (standard)
IP67 according to EN 60529 with cable gland having equal or higher protection degree

General data

Ambient temperature:
Max. actuation frequency:
Mechanical endurance:
Mounting position:
Safety parameters:
$\mathrm{B}_{10 \mathrm{~d}}$:
Mechanical interlock, not coded:
Tightening torques for installation:
(1) One operation cycle means two movements, one to close and one to open contacts, as defined in EN 60947-5-1.

Cable cross section (flexible copper strands)

Contact blocks 20, 21, 22, 33, 34:

Contact block 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 18:
Contact block 2:

min.	$1 \times 0.34 \mathrm{~mm}^{2}$	$(1 \times$ AWG 22)
\max.	$2 \times 1.5 \mathrm{~mm}^{2}$	$(2 \times$ AWG 16)
\min.	$1 \times 0.5 \mathrm{~mm}^{2}$	$(1 \times$ AWG 20)
\max.	$2 \times 2.5 \mathrm{~mm}^{2}$	$(2 \times$ AWG 14)
\min.	$1 \times 0.5 \mathrm{~mm}^{2}$	$(1 \times$ AWG 20)
\max.	$2 \times 1.5 \mathrm{~mm}^{2}$	$(2 \times$ AWG 16)

In conformity with standards:

IEC 60947-5-1, EN 60947-5-1, EN 60947-1, EN 50041, IEC 60204-1, EN 60204-1,
EN ISO 14119, EN ISO 12100, IEC 529, EN 60529, UL 508, CSA 22.2 No. 14.
Approvals:
IEC 60947-5-1, UL 508, CSA 22.2 No.14, GB14048.5-2001.

In conformity with the requirements of:

Low Voltage Directive 2006/95/EC, Machinery Directive 2006/42/EC and
EMC Directive 2004/108/EC.
Positive contact opening in conformity with standards:
IEC 60947-5-1, EN 60947-5-1.

IMQ approval:	
EG605	
UL approval:	
C131787	
ECC approval:	
EAC approval:	RU C-IT ДM94.B.01024

Markings and quality marks:

Installation for safety applications:

Use only switches marked with the symbol Θ aside the product code. Always connect the safety circuit to the NC contacts (normally closed contacts: 11-12, 21-22 or 31-32) as stated in standard EN 60947-5-1, encl. K, par. 2. Actuate the switch at least up to the positive opening travel shown in the travel diagrams on page 238. Operate the switch at least with the positive opening force, indicated between brackets below each article, aside the minimum force value.
§ If not expressly indicated in this chapter, for correct installation and utilization of all articles see chapter utilization requirements from page 235 to page 246.

Electrical data			Utilization category			
	Thermal current (Ith): Rated insulation voltage (Ui):	10 A 500 Vac 600 Vdc 400 Vac 500 Vdc (contact blocks 2, 11, 12, 20, 21, 22, 33, 34) 6 kV 4 kV (contact blocks $20,21,22,33,34$) 1000 A according to EN 60947-5-1 type aM fuse 10 A 500 V 3	Alternating current: AC15 (50 $\div 60 \mathrm{~Hz}$)			
			Ue (V)	250	400	500
			le (A)	6	4	1
	Rated impulse withstand voltage ($\mathrm{U}_{\text {imp }}$) :		Direct current: DC13			
	Conditional short circuit current:		Ue (V)	24		250
	Protection against short circuits: Pollution degree:		le (A)	6	1.1	0.4
	Thermal current (Ith): Rated insulation voltage (Ui): Protection against short circuits: Pollution degree:	$\begin{aligned} & 4 \mathrm{~A} \\ & 250 \mathrm{Vac} 300 \mathrm{Vdc} \\ & \text { type gG fuse } 4 \mathrm{~A} 500 \mathrm{~V} \\ & 3 \end{aligned}$	Alternating current: AC15 ($50 \div 60 \mathrm{~Hz}$)			
			Ue (V)	24	120	250
			le (A)	4	4	4
			Direct	ent: D		
			Ue (V)	24	125	250
			le (A)	4	1.1	0.4
	Thermal current (lth): Rated insulation voltage (Ui): Protection against short circuits: Pollution degree:	```2 A 30 Vac 36 Vdc type gG fuse 2 A 500 V 3```	Alternating current: AC15 $(50 \div 60 \mathrm{~Hz})$			
			le (A)	2		
			Direct	ent: D		
			Ue (V)	24		
			le (A)	2		

Characteristics approved by IMO

Rated insulation voltage (Ui): 500 Vac
400 Vac (for contact blocks 2, 11, 12, 20, $21,22,33,34)$
Conventional free air thermal current (lth): 10 A
Protection against short circuits: type aM fuse 10 A 500 V
Rated impulse withstand voltage ($\mathrm{U}_{\mathrm{imp}}$): 6 kV
4 kV (for contact blocks 20, 21, 22, 33, 34) Protection degree of the housing: IP67
MV terminals (screw terminals)
Pollution degree 3
Utilization category: AC15
Operating voltage (Ue): $400 \mathrm{Vac}(50 \mathrm{~Hz})$
Operating current (le): 3 A
Forms of the contact element: $Z a, Z b, Z a+Z a, Y+Y, X+X, Y+Y+X, Y+Y+Y, Y+X+X$
Positive opening of contacts on contact block $5,6,7,9,11,13,14,16,18,20,21$,
22, 33, 34, 66
In conformity with standards: EN 60947-1, EN 60947-5-1 + A1:2009, fundamental
requirements of the Low Voltage Directive 2006/95/EC.

Please contact our technical service for the list of approved products.

Characteristics approved by UL

Utilization categories Q300 (69 VA, 125 ... 250 Vdc)
A600 (720 VA, $120 \ldots 600 \mathrm{Vac}$)
Data of housing type 1, 4 X "indoor use only", 12, 13
For all contact blocks except 2 and 3 use 60 or $75^{\circ} \mathrm{C}$ copper (Cu) conductor, rigid or flexible, wire size AWG 12/14. Terminal tightening torque of 7.1 lb in (0.8 Nm).
For contact blocks 2 and 3 use 60 or $75^{\circ} \mathrm{C}$ copper (Cu) conductor, rigid or flexible, wire size AWG 14. Terminal tightening torque of 12 lb in (1.4 Nm).

In conformity with standard: UL 508, CSA 22.2 No. 14

Please contact our technical service for the list of approved products.

Connection diagram for M12 connectors

Contact block 2 $1 \mathrm{NO}-1 \mathrm{NC}+1 \mathrm{NO}-1 \mathrm{NC}$	Contact block 5 $1 \mathrm{NO}+1 \mathrm{NC}$	Contact block 6 $1 \mathrm{NO}+1 \mathrm{NC}$	Contact block 7 $1 \mathrm{NO}+1 \mathrm{NC}$	$\begin{aligned} & \text { Contact block } 9 \\ & 2 N C \end{aligned}$	$\begin{gathered} \text { Contact block } 10 \\ 2 \mathrm{NO} \end{gathered}$	$\begin{gathered} \text { Contact block } 11 \\ \text { 2NC } \end{gathered}$	$\begin{gathered} \text { Contact block } 12 \\ 2 \mathrm{NO} \end{gathered}$	$\begin{gathered} \text { Contact block } 13 \\ \text { 2NC } \end{gathered}$
M12 connector, 8 poles	M12 connector, 5 poles							
Contacts Pin no. NO 3-4	Contacts Pin no. NC 1-2	Contacts Pin no. NC 1-2	Contacts Pin no. NC $\quad 1-2$	Contacts Pin no. NC $\quad 1-2$	Contacts Pin no. NO 1-2	Contacts Pin no. NC 1-2	Contacts Pin no. NO 1-2	Contacts Pin no. NC (1°) 1-2
NC 5-6	NO 3-4	NO 3-4	NO 3-4	NC 3-4	NO 3-4	NC 3-4	NO 3-4	NC (2°) 3-4
NC 7-8	ground 5							
NO 1-2								

$\begin{gathered} \text { Contact block } 14 \\ 2 N C \end{gathered}$	$\begin{gathered} \text { Contact block } 15 \\ 2 \mathrm{NO} \end{gathered}$	$\begin{gathered} \text { Contact block } 16 \\ 2 N C \end{gathered}$	Contact block 18 $1 \mathrm{NO}+1 \mathrm{NC}$	Contact block 20 $2 \mathrm{NC}+1 \mathrm{NO}$	Contact block 21 3NC	Contact $1 \mathrm{NC}+$	$\begin{aligned} & \text { ock } 22 \\ & \text { NO } \end{aligned}$	Contact block 33 $1 \mathrm{NC}+1 \mathrm{NO}$		$\begin{gathered} \text { Contact block } 34 \\ \text { 2NC } \end{gathered}$	
M12 connector, 5 poles	M12 connector, 8 poles	M12 connector, 8 M12 connector, 8 poles poles			M12 connector, 5 poles		M12 connector, 5 poles				
$\begin{array}{\|cc\|} \hline \text { Contacts } & \text { Pin no. } \\ \mathrm{NC}\left(1^{\circ}\right) & 1-2 \end{array}$	Contacts Pin no. $\mathrm{NO}\left(1^{\circ}\right) \quad 1-2$	Contacts Pin no. NC , lever at the right 1-2	Contacts Pin no. NC 1-2	Contacts Pin no. NC $\quad 3-4$	Contacts Pin no. NC $\quad 3-4$	Contacts NC	Pin no. 3-4	Contacts NC	Pin no. 1-2	Contacts NC	Pin no. 1-2
NC (2°) $3-4$	NO (2) ${ }^{\circ}$ 3-4	NC, lever to the left 3-4	NO 3-4	NC 5-6	NC 5-6	NO	5-6	NO	3-4	NC	3-4
ground 5	ground 5	ground 5	ground 5	NO 7-8	NC 7-8	NO	7-8	ground	5	ground	5
				ground 1	ground 1	ground	1				

```
Contact block E1
        PNP
```


M12 connector, 5 poles

Contacts	Pin no.
+	1
-	3
NC	2
NO	4
ground	5

All measures in the drawings are in mm
Items with code on green background are stock items

All measures in the drawings are in mm

Contact blocks		Other rollers available. See on page 28	Other rollers available. See on page 28	Porcelain roller	Other rollers available. See on page 28	
5	R		FD 551-M2 Θ 1NO+1NC	FD 552-M2 Θ 1NO+1NC	FD 553-E11M2V9 Θ 1NO+1NC	FD 556-M2 Θ 1NO+1NC
6	\square	FD 651-M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FD 652-M2 Θ 1NO+1NC	FD 653-E11M2V9 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FD 656-M2 Θ 1NO+1NC	
7	LO	FD 751-M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FD 752-M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FD 753-E11M2V9 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FD 756-M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	
9	L	FD 951-M2 Θ 2NC	FD 952-M2 Θ 2NC	FD 953-E11M2V9 Θ 2NC	FD 956-M2 Θ 2NC	
10	\square	FD 1051-M2 2NO	FD 1052-M2 2NO	FD 1053-E11M2V9 2NO	FD 1056-M2 2NO	
11	R	FD 1151-M2 Θ 2NC	FD 1152-M2 Θ 2NC		FD 1156-M2 Θ 2NC	
12	R	FD 1251-M2 2NO	FD 1252-M2 2NO	FD 1253-E11M2V9 2NO	FD 1256-M2 2NO	
13	LV	FD 1351-M2 Θ 2NC	FD 1352-M2 Θ 2NC	FD 1353-E11M2V9 Θ 2NC	FD 1356-M2 Θ 2NC	
14	LS	FD 1451-M2 Θ 2NC	FD 1452-M2 Θ 2NC	FD 1453-E11M2V9 Θ 2NC	FD 1456-M2 Θ 2NC	
15	LS	FD 1551-M2 2NO	FD 1552-M2 2NO	FD 1553-E11M2V9 2NO	FD 1556-M2 2NO	
16	LI				FD 1656-M2 Θ 2NC	
18	LA	FD 1851-M2 Θ 1NO+1NC	FD 1852-M2 Θ 1NO+1NC	FD 1853-E11M2V9 $¢ 1 \mathrm{NO}+1 \mathrm{NC}$	FD 1856-M2 Θ 1NO+1NC	
20	\square	FD 2051-M2 $\Theta 1 \mathrm{NO}+2 \mathrm{NC}$	FD 2052-M2 Θ 1NO+2NC	FD 2053-E11M2V9 $¢ 1$ NO+2NC	FD 2056-M2 Θ 1NO+2NC	
21	L	FD 2151-M2 $\Theta 3 \mathrm{NC}$	FD 2152-M2 $\Theta 3 \mathrm{NC}$	FD 2153-E11M2V9 $¢ 3 \mathrm{NC}$	FD 2156-M2 $\Theta 3 N \mathrm{C}$	
22	L	FD 2251-M2 $¢ 2 \mathrm{NO}+1 \mathrm{NC}$	FD 2252-M2 Θ 2NO+1NC	FD 2253-E11M2V9 $¢ 2 \mathrm{NO}+1 \mathrm{NC}$	FD 2256-M2 $\Theta 2 \mathrm{NO}+1 \mathrm{NC}$	
2	R	FD 251-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC}$)	FD 252-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC)}$	FD 253-E11M2 2x(1NO-1NC)	FD 256-M2 2x(1NO-1NC)	
E1	同	FD E151-M2 1NO-1NC	FD E152-M2 1NO-1NC	FD E153-E11M2V9 1NO-1NC	FD E156-M2 1NO-1NC	
Max. speed		page 237 - type 1	page 237 - type 1	$0.5 \mathrm{~m} / \mathrm{s}$	page 237 - type 1	
Min. force		$0.06 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.06 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.03 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.1 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	
Travel diagrams		page 238 - group 4	page 238 - group 4	page 238 - group 5	page 238 - group 4	

${ }^{(1)}$ Positive opening only with actuator set to max. See page 27.

	Other rollers available. See on page 28	With stainless steel roller on request	With stainless steel roller on request	Rope switch for signalling
Contact type:				
$5 \quad \mathrm{R}$	FD 557-M2 Θ 1NO+1NC	FD 541-M2 Θ 1NO+1NC	FD 542-M2 Θ 1NO+1NC	FD 576-M2 1NO+1NC
6 L	FD 657-M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	Bistable switch with single track lyra	Bistable switch with dual track lyra	FD 676-M2 1NO+1NC
7 L0	FD 757-M2 Θ 1NO+1NC		lever	FD 776-M2 1NO+1NC
9 L	FD 957-M2 Θ 2NC			FD 976-M2 2NO
10 L	FD 1057-M2 2NO			FD 1076-M2 2NC
11 R	FD 1157-M2 Θ 2NC	11)	FD 1176-M2 2NO
12 R	FD 1257-M2 2NO	$1 \times+$		FD 1276-M2 2NC
13 LV	FD 1357-M2 Θ 2NC	N	- +2	FD 1376-M2 2NO
14 LS	FD 1457-M2 Θ 2NC	2)	(0)	FD 1476-M2 2NO
15 LS	FD 1557-M2 2NO	1-	-	FD 1576-M2 2NC
16 L	FD 1657-M2 Θ 2NC	E(O)		
18 LA	FD 1857-M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$			FD 1876-M2 1NO+1NC
20 L	FD 2057-M2 Θ 1NO+2NC	$45^{\circ} 65^{\circ} \oplus 80^{\circ} 90^{\circ}$	$45^{\circ} 65^{\circ} \oplus 80^{\circ} 90^{\circ}$	FD 2076-M2 2NO+1NC
21 L	FD 2157-M2 $\Theta 3 \mathrm{NC}$			FD 2176-M2 3NC
22 L	FD 2257-M2 Θ 2NO+1NC		$25^{\circ} \mathrm{S}$	FD 2276-M2 1NO+2NC
2 R	FD 257-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC)}$	$\mathrm{S}=$ mechanical switching point positive opening on contact 21-22 only	$S=$ mechanical switching point positive opening on contact 21-22 only	FD 276-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC})$
E1 亩	FD E157-M2 1NO-1NC			
Max. speed	page 237 - type 1	$0.5 \mathrm{~m} / \mathrm{s}$ with cam at 30°	$0.5 \mathrm{~m} / \mathrm{s}$ with cam at 30°	$0.5 \mathrm{~m} / \mathrm{s}$
Min. force	$0.1 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.21 \mathrm{Nm}(0.36 \mathrm{Nm} \Theta)$	$0.21 \mathrm{Nm}(0.36 \mathrm{Nm} \Theta)$	initial 20 N - final 40 N
Travel diagrams	page 238 - group 4			page 238 - group 6

All measures in the drawings are in mm

Position switches with revolving lever without actuator

Contact type:		Regular head	Compact head	
	action action action apped action d action da and ed action endent action			
Contact blocks				
5	R	FD 538-M2 Θ 1NO+1NC	FD 558-M2 Θ 1NO+1NC	FD 540-M2 Θ 1NO+1NC
6	L	FD 638-M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FD 658-M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	Bistable switch
7	L0	FD 738-M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FD 758-M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	
9	L	FD 938-M2 Θ 2NC	FD 958-M2 Θ 2NC	$0 \quad 45^{\circ} 65^{\circ} \oplus 80^{\circ} 90^{\circ}$
10	L	FD 1038-M2 2NO	FD 1058-M2 2NO	$25^{\circ} \mathrm{S}$
11	R	FD 1138-M2 Θ 2NC	FD 1158-M2 Θ 2NC	ical switching po
12	R	FD 1238-M2 2NO	FD 1258-M2 2NO	positive opening on contact 21-22 only
13	LV	FD 1338-M2 Θ 2NC	FD 1358-M2 Θ 2NC	
14	LS	FD 1438-M2 Θ 2NC	FD 1458-M2 Θ 2NC	
15	LS	FD 1538-M2 2NO	FD 1558-M2 2NO	
16	\square	FD 1638-M2 Θ 2NC		
18	LA	FD 1838-M2 Θ 1NO+1NC	FD 1858-M2 Θ 1NO+1NC	
20	L	FD 2038-M2 Θ 1NO+2NC	FD 2058-M2 Θ 1NO+2NC	
21	L	FD 2138-M2 $\Theta 3 \mathrm{NC}$	FD 2158-M2 $\Theta 3 \mathrm{NC}$	
22	L	FD 2238-M2 Θ 2NO+1NC	FD 2258-M2 Θ 2NO+1NC	
2	R	FD 238-M2 2x(1NO-1NC)	FD 258-M2 2x(1NO-1NC)	
E1	同	FD E138-M2 1NO-1NC	FD E158-M2 1NO-1NC	
Min. force		$0.1 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.06 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.5 \mathrm{~m} / \mathrm{s}$ with cam at 30°
Travel diagrams		page 238 - group 4	page 238 - group 4	$0.21 \mathrm{Nm}(0.36 \mathrm{Nm} \Theta)$

All measures in the drawings are in mm

IMPORTANT

For safety applications: join only switches and actuators marked with symbol Θ aside the product code.
For more information about safety applications see details on page 235.

Loose actuators			Flexible rod with pointed end			All measures in the drawings are in mm			
IMPORTANT: These loose actuch	ors can be used with items	eries FD, FP, FL, FC only.				Adjustable actuator with technopolymer roller		Adjustable fiber glass rod	
Technopolymer roller $\varnothing 20 \mathrm{~mm}$	Adjustable round rod $\varnothing 3 \times 125 \mathrm{~mm}$	Adjustable square rod $3 \times 3 \times 125 \mathrm{~mm}$							
			(20)						
VF L31 Θ	VF L32 ${ }^{(3)}$	VF L33 ${ }^{(3)}$	VF L34			VF L35 $\Theta{ }^{(1)(3)}$			VF L36 ${ }^{(3)}$
Single track lyra actuator	Dual track lyra actuator	Technopolymer roller, Ø 20 mm	Technopolymer roller, \varnothing 20 mm		Porcelain roller		Adjustable safety actuator with technopolymer roller		Technopolymer roller, \varnothing 20 mm
				30					
VF L41 Θ	VF L42 Θ	VF L51 Θ		VF L52 Θ	VF L53	$\Theta{ }^{\text {(2) }}$	VF L56 Θ		VF L57 Θ

[^0]Special loose actuators
Stainless steel rollers, $\varnothing 20 \mathrm{~mm}$

VF L31-R24 Θ	VF L35-R24 ${ }^{(1)}{ }^{(1)}$	VF L51-R24 Θ	VF L52-R24 Θ	VF L56-R24 $\Theta^{(3)}$	VF L57-R24 Θ

Technopolymer rollers, $\varnothing 35 \mathrm{~mm}$

Rubber rollers, $\varnothing 40 \mathrm{~mm}$

VF L31-R5 Θ (4)	VF L35-R5 $\underbrace{(1)(3)}$	VF L51-R5 Θ (4)	VF L52-R5 Θ	VF L56-R5 $\Theta{ }^{(3)}$	VF L57-R5 Θ (4)

Rubber rollers, $\varnothing 50 \mathrm{~mm}$

Protruding rubber rollers, $\varnothing 50 \mathrm{~mm}$

Selection diagram

product options
accessory sold separately

Code structure Attention! The feasibility of a code number does not mean the effective availability of a product. Please contact our sales office.

| | | |
| :--- | :--- | :--- | :--- |

Actuators	
$\mathbf{0 1}$	short plunger
$\mathbf{0 2}$	roller lever
$\mathbf{0 5}$	angled roller lever

Contact type

silver contacts (standard)
G
silver contacts with $1 \mu \mathrm{~m}$ gold coating (not for contact block 2)

Threaded conduit entry

M2	M20×1.5 (standard)
	PG 13.5

Rollers

standard roller

R24 stainless steel, $\varnothing 20 \mathrm{~mm}$
(for actuators $02,05,31,35,51,52,56,57$)
R25 technopolymer, $\varnothing 35 \mathrm{~mm}$
R25 (for actuators 31, 35, 51, 52, 56, 57)
R5 rubber, $\varnothing 40 \mathrm{~mm}$
(for actuators 31, 35, 51, 52,56,57)
R26 rubber, $\varnothing 50 \mathrm{~mm}$
(for actuators $31,35,51,52,56,57$)
R27 rubber, protruding, $\varnothing 50 \mathrm{~mm}$
R27 (for actuators 35 e 36)

Pre-installed cable glands or connectors
without cable gland or connector (standard)
K23 cable gland for cables $\varnothing 6 \ldots \varnothing 12$ mm
K27 cable gland for cables \varnothing 3 ... $\varnothing 7 \mathrm{~mm}$
K45 M12 plastic connector, 8 poles
K70 M12 plastic connector, 4 poles
Please contact our technical service for the complete list of possible combinations.

Main features

- Technopolymer housing, one conduit entry
- Protection degree IP67
- 17 contact blocks available
- 28 actuators available
- Versions with M12 connector
- Versions with gold-plated silver contacts

Technical data

Housing

Housing made of fiber glass reinforced technopolymer, self-extinguishing, shock-proof and with double insulation:

One threaded conduit entry:
Protection degree:
M20×1.5 (standard)
IP67 according to EN 60529 with cable gland having equal or higher protection degree

General data

Ambient temperature: $\quad-25^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$
Max. actuation frequency:
Mechanical endurance:
Mounting position:
3600 operating cycles ${ }^{1} /$ hour
20 million operating cycles ${ }^{1}$
any
Safety parameters:
$\mathrm{B}_{10 \mathrm{~d}}$:
Mechanial inter not coded:
Nechanical interlock, not coded:
40,000,000 for NC contacts
type 1 according to EN ISO 14119
see pages 235-246
(1) One operation cycle means two movements, one to close and one to open contacts, as defined in EN 60947-5-1.

Cable cross section (flexible copper strands)
Contact blocks 20, 21, 22, 33, 34:
Contact block $5,6,7,9,10,11,12,13,14,15,16,18$:
Contact block 2:

\min.	$1 \times 0.34 \mathrm{~mm}^{2}$	$(1 \times$ AWG 22)
\max.	$2 \times 1.5 \mathrm{~mm}^{2}$	$(2 \times$ AWG 16)
\min.	$1 \times 0.5 \mathrm{~mm}^{2}$	$(1 \times$ AWG 20)
\max.	$2 \times 2.5 \mathrm{~mm}^{2}$	$(2 \times$ AWG 14)
\min.	$1 \times 0.5 \mathrm{~mm}^{2}$	$(1 \times$ AWG 20)
\max.	$2 \times 1.5 \mathrm{~mm}^{2}$	$(2 \times$ AWG 16)

In conformity with standards:

IEC 60947-5-1, EN 60947-5-1, EN 60947-1, EN 50041, IEC 60204-1, EN 60204-1,
EN ISO 14119, EN ISO 12100, IEC 60529, EN 60529, UL 508, CSA 22.2 No. 14.

Approvals:

IEC 60947-5-1, UL 508, CSA 22.2 No.14, GB14048.5-2001.

In conformity with the requirements of:

Low Voltage Directive 2006/95/EC, Machinery Directive 2006/42/EC and EMC Directive 2004/108/EC.
Positive contact opening in conformity with standards:
IEC 60947-5-1, EN 60947-5-1.

IMQ approval:	
EG605	
UL approval:	
C131787	
ECC approval:	
EAC approval:	RU C-IT ДM94.B.01024

Installation for safety applications:
Use only switches marked with the symbol Θ aside the product code. Always connect the safety circuit to the NC contacts (normally closed contacts: 11-12, 21-22 or 31-32) as stated in standard EN 60947-5-1, encl. K, par. 2. Actuate the switch at least up to the positive opening travel shown in the travel diagrams on page 238. Operate the switch at least with the positive opening force, indicated between brackets below each article, aside the minimum force value.
§ If not expressly indicated in this chapter, for correct installation and utilization of all articles see chapter utilization requirements from page 235 to page 246.

Electrical data			Utilization category			
	Thermal current (Ith): Rated insulation voltage (Ui):	10 A 500 Vac 600 Vdc 400 Vac 500 Vdc (contact blocks 2, 11, 12, 20, 21, 22, 33, 34) 6 kV 4 kV (contact blocks 20, 21, 22, 33, 34) 1000 A according to EN 60947-5-1 type aM fuse 10 A 500 V 3	Alternating current: AC15 ($50 \div 60 \mathrm{~Hz}$)			
			Ue (V)	250	400	500
			le (A)	6	4	1
	Rated impulse withstand voltage ($\mathrm{U}_{\mathrm{imp}}$): Conditional short circuit current: Protection against short circuits: Pollution degree:		Direct current: DC13			
			Ue (V)	24	125	250
			le (A)	6	1.1	0.4
	Thermal current (Ith): Rated insulation voltage (Ui): Protection against short circuits: Pollution degree:	```4A 250 Vac 300 Vdc type gG fuse 4 A 500 V 3```	Alternating current: AC15 ($50 \div 60 \mathrm{~Hz}$)			
			Ue (V)	24	120	250
			le (A)	4	4	4
			Direct	ent: D		
			Ue (V)	24	125	250
			le (A)	4	1.1	0.4
	Thermal current (lth): Rated insulation voltage (Ui): Protection against short circuits: Pollution degree:	```2 A 30 Vac 36 Vdc type gG fuse 2 A 500 V 3```	Alternating current: AC15 ($50 \div 60 \mathrm{~Hz}$)			
			le (A)	2		
			Direct c	ent: D		
			Ue (V)	24		
			le (A)	2		

Characteristics approved by IMO

Rated insulation voltage (Ui): 500 Vac
400 Vac (for contact blocks 2, 11, 12, 20, 21, 22, 33, 34)
Conventional free air thermal current (lth): 10 A
Protection against short circuits: type aM fuse 10 A 500 V
Rated impulse withstand voltage ($U_{\text {imp }}$): 6 kV
4 kV (for contact blocks 20, 21, 22, 33, 34)
Protection degree of the housing: IP67
MV terminals (screw terminals)
Pollution degree 3
Utilization category: AC15
Operating voltage (Ue): $400 \mathrm{Vac}(50 \mathrm{~Hz})$
Operating current (le): 3 A
Forms of the contact element: $\mathrm{Za}, \mathrm{Zb}, \mathrm{Za}+Z a, Y+Y, X+X, Y+Y+X, Y+Y+Y, Y+X+X$
Positive opening of contacts on contact blocks $5,6,7,9,11,13,14,16,18,20$,
$21,22,33,34$
In conformity with standards: EN 60947-1, EN 60947-5-1+ A1:2009, fundamental
requirements of the Low Voltage Directive 2006/95/EC.
Please contact our technical service for the list of approved products.

Characteristics approved by UL
Utilization categories Q300 (69 VA, 125 ... 250 Vdc)
A600 (720 VA, $120 \ldots 600 \mathrm{Vac}$)
Data of housing type $1,4 \mathrm{X}$ "indoor use only", 12,13
For all contact blocks except 2 and 3 use 60 or $75^{\circ} \mathrm{C}$ copper (Cu) conductor, rigid or flexible, wire size AWG 12/14. Terminal tightening torque of 7.1 lb in (0.8 Nm).
For contact blocks 2 and 3 use 60 or $75^{\circ} \mathrm{C}$ copper (Cu) conductor, rigid or flexible, wire size AWG 14. Terminal tightening torque of 12 lb in (1.4 Nm).

In conformity with standard: UL 508, CSA 22.2 No. 14

Please contact our technical service for the list of approved products.

Connection diagram for M12 connectors

Contact block 2 $1 \mathrm{NO}-1 \mathrm{NC}+1 \mathrm{NO}-1 \mathrm{NC}$	Contact block 5 1NO+1NC	$\begin{gathered} \text { Contact block } 6 \\ 1 \mathrm{NO}+1 \mathrm{NC} \end{gathered}$	$\begin{aligned} & \text { Contact block } 7 \\ & 1 \mathrm{NO}+1 \mathrm{NC} \end{aligned}$	$\begin{gathered} \text { Contact block } 9 \\ \text { 2NC } \end{gathered}$	$\begin{gathered} \text { Contact block } 10 \\ 2 \mathrm{NO} \end{gathered}$	Contact block 11 2NC	$\begin{aligned} & \text { Contact block } 12 \\ & 2 \mathrm{NO} \end{aligned}$	Contact block 13 2NC
M12 connector, 8 poles	M12 connector, 4 poles							
$\begin{array}{cc}\text { Contacts } & \text { Pin no. } \\ \text { NO } & 3-4\end{array}$	Contacts Pin no. NC 1-2	Contacts Pin no. $\text { NC } \quad 1-2$	Contacts Pin no. NC 1-2	Contacts Pin no. $\text { NC } \quad 1-2$	$\begin{array}{cc}\text { Contacts } & \text { Pin no. } \\ \text { NO } & 1-2\end{array}$	Contacts Pin no. NC $\quad 1-2$	Contacts Pin no. $\text { NO } \quad 1-2$	Contacts Pin no. NC (19) 1-2
NC 5-6	NO 3-4	NO 3-4	NO 3-4	NC 3-4	NO 3-4	NC 3-4	NO 3-4	NC (20) 3 -4
NC 7-8								
NO 1-2								
Contact block 14 2NC	Contact block 15 2NO	Contact block 16 2NC	Contact block 18 $1 \mathrm{NO}+1 \mathrm{NC}$	Contact block 20 $2 \mathrm{NC}+1 \mathrm{NO}$	$\begin{gathered} \text { Contact block } 21 \\ \text { 3NC } \end{gathered}$	Contact block 22 $1 \mathrm{NC}+2 \mathrm{NO}$	Contact block 33 $1 \mathrm{NC}+1 \mathrm{NO}$	Contact block 34 2NC
M12 connector, 4 poles	M12 connector, 8 poles	M12 connector, 8 poles	M12 connector, 8 poles	M12 connector, 4 poles	M12 connector, 4 poles			
Contacts Pin no. NC (1 ${ }^{\circ}$) $1-2$	Contacts Pin no. NO (1°) $1-2$	Contacts Pin no. NC, lever at the right $1-2$	Contacts Pin no. NC $\quad 1-2$	Contacts Pin no. NC $\quad 3-4$	Contacts Pin no. NC $\quad 3-4$	Contacts Pin no NC \quad 3-4	Contacts Pin no. NC 1-2	Contacts Pin no. NC $\quad 1-2$
NC (20) 3 -4	NO (2) ${ }^{\circ}$ 3-4	$N C$, lever to the left $3-4$	NO 3-4	NC 5-6	NC 5-6	NO 5-6	NO 3-4	NC $\quad 3-4$
				NO 7-8	NC 7-8	NO 7-8		

M12 connector, 4 poles

Contacts	Pin no.
+	1
-	3
NC	2
NO	4

Contact blocks			With external rubber gasket		With external ruber gasket	
5	[FP 508-M2 Θ 1 ${ }^{\text {NO}}+1 \mathrm{NC}$	FP 510-M2 Θ - ${ }^{\text {N }}$ O+1NC	FP 511-M2 Θ 1 ${ }^{\text {NO}}+1 \mathrm{NC}$	FP 515-M2 $\odot{ }^{\text {1 }}$ NO+1NC
6	\square	FP 608-M2 Θ 1 ${ }^{\text {NO+1NC }}$	FP 610-M2 Θ 1 ${ }^{\text {NO+1NC }}$	FP 611-M2 Θ 1 ${ }^{\text {NO+1NC }}$	FP 615-M2 Θ 1NO+1NC	
7	L0	FP 708-M2 $\odot 1$ 1 ${ }^{\text {O }}+1 \mathrm{NC}$	FP 710-M2 $\odot 1$ 1NO+1NC	FP 711-M2 \odot 1 ${ }^{\text {NO}+1 \mathrm{NC}}$	FP 715-M2 Θ 1NO+1NC	
9	\square	FP 908-M2 Θ 2NC	FP 910-M2 Θ 2NC	FP 911-M2 Θ 2NC	FP 915-M2 Θ 2NC	
10	\square	FP 1008-M2 2NO	FP 1010-M2 2NO	FP 1011-M2 2NO	FP 1015-M2 2NO	
11	R	FP 1108-M2 \oplus 2NC	FP 1110-M2 \oplus 2NC	FP 1111-M2 \oplus 2NC	FP 1115-M2 Θ 2NC	
12	R	FP 1208-M2 2NO	FP 1210-M2 2NO	FP 1211-M2 2NO	FP 1215-M2 2NO	
13	LV	FP 1308-M2 Θ 2NC	FP 1310-M2 Θ 2NC	FP 1311-M2 Θ 2NC	FP 1315-M2 Θ 2NC	
14	LS	FP 1408-M2 Θ 2NC	FP 1410-M2 Θ 2NC	FP 1411-M2 Θ 2NC	FP 1415-M2 Θ 2NC	
15	LS	FP 1508-M2 2NO	FP 1510-M2 2NO	FP 1511-M2 2NO	FP 1515-M2 2NO	
18	LA	FP 1808-M2 Θ 1 ${ }^{\text {NO+1NC }}$	FP 1810-M2 Θ 1 ${ }^{\text {NO}+1 N C}$	FP 1811-M2 Θ - ${ }^{\text {NO }}+1 \mathrm{NC}$	FP 1815-M2 Θ 1 ${ }^{\text {NO+1NC }}$	
20	\square	FP 2008-M2 Θ 1NO+2NC	FP 2010-M2 Θ 1NO+2NC	FP 2011-M2 Θ 1NO+2NC	FP 2015-M2 Θ 1NO+2NC	
21	\square	FP 2108-M2 Θ 3NC	FP 2110-M2 Θ 3NC	FP 2111-M2 Θ 3NC	FP 2115-M2 \odot 3NC	
22	\square	FP 2208-M2 \bigodot 2NO+1NC	FP 2210-M2 Θ 2NO+1NC	FP 2211-M2 $\odot 2 \mathrm{NO}+1 \mathrm{NC}$	FP 2215-M2 Θ 2NO+1NC	
	R	FP 208-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC)}$	FP 210-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC)}$	FP 211-M2 2x(1NO-1NC)	FP 215-M2 2x(1NO-1NC)	
E1	因	FP E108-M2 1NO-1NC	FP E110-M2 1NO-1NC	FP E111-M2 1NO-1NC	FP E115-M2 1NO-1NC	
Max. speed		page 237 - type 4	page 237 - type 4	page 237 - type 4	page 237 - type 2	
Min. force		$8 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$11 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$8 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$11 \mathrm{~N}(25 \mathrm{~N} \Theta)$	
Travel diagrams		page 238 - group 1	page 238 - group 1	page 238 - group 1	page 238-group 1	

All measures in the drawings are in mm

		Ball, $\varnothing 8$ mm, stainless steel	Ball, $\varnothing 12.7 \mathrm{~mm}$, stainless steel	With external rubber gasket
Contact type: Contact blocks				
$5 \quad \mathbf{R}$	FP 516-M2 Θ 1NO+1NC	FP 518-M2 Θ 1NO+1NC	FP 519-M2 Θ 1NO+1NC	FP 520-M2 1NO+1NC
6 L	FP 616-M2 Θ 1NO+1NC	FP 618-M2 Θ 1NO+1NC	FP 619-M2 Θ 1NO+1NC	
7 L0	FP 716-M2 Θ 1NO+1NC	FP 718-M2 Θ 1NO+1NC	FP 719-M2 Θ 1NO+1NC	
9 L	FP 916-M2 Θ 2NC	FP 918-M2 Θ 2NC	FP 919-M2 Θ 2NC	
10 L	FP 1016-M2 2NO	FP 1018-M2 2NO	FP 1019-M2 2NO	FP 1020-M2 2NO
11 R	FP 1116-M2 Θ 2NC	FP 1118-M2 Θ 2NC	FP 1119-M2 Θ 2NC	
12 R	FP 1216-M2 2NO	FP 1218-M2 2NO	FP 1219-M2 2NO	
13 LV	FP 1316-M2 Θ 2NC	FP 1318-M2 Θ 2NC	FP 1319-M2 Θ 2NC	
14 LS	FP 1416-M2 Θ 2NC	FP 1418-M2 Θ 2NC	FP 1419-M2 $\Theta 2 N C$	
15 LS	FP 1516-M2 2NO	FP 1518-M2 2NO	FP 1519-M2 2NO	
18 LA	FP 1816-M2 Θ 1NO+1NC	FP 1818-M2 Θ 1NO+1NC	FP 1819-M2 Θ 1NO+1NC	FP 1820-M2 1NO+1NC
20 L	FP 2016-M2 Θ 1NO+2NC	FP 2018-M2 Θ 1NO+2NC	FP 2019-M2 Θ 1NO+2NC	FP 2020-M2 1NO+2NC
21 L	FP 2116-M2 $\Theta 3 \mathrm{NC}$	FP 2118-M2 $\Theta 3 \mathrm{NC}$	FP 2119-M2 $\Theta 3 N C$	FP 2120-M2 3NC
22 L	FP 2216-M2 Θ 2NO+1NC	FP 2218-M2 Θ 2NO+1NC	FP 2219-M2 Θ 2NO+1NC	FP 2220-M2 2NO+1NC
2 R	FP 216-M2 2x(1NO-1NC)	FP 218-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC}$)	FP 219-M2 2x(1NO-1NC)	FP 220-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC)}$
E1 \quad 交	FP E116-M2 1NO-1NC	FP E118-M2 1NO-1NC	FP E119-M2 1NO-1NC	FP E120-M2 1NO-1NC
Max. speed	page 237 - type 2	page 237 - type 4	page 237 - type 4	$1 \mathrm{~m} / \mathrm{s}$
Min. force	$8 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$8 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$8 \mathrm{~N}(25 \mathrm{~N} \Theta)$	0.09 Nm
Travel diagrams	page 238 - group 1	page 238 - group 1	page 238 - group 1	page 238 - group 3

nt		Other rollers available. See on page 38	Other rollers available. See on page 38	Porcelain roller	Other rollers available. See on page 38
5	R	FP 551-M2 Θ 1NO+1NC	FP 552-M2 Θ 1NO+1NC	FP 553-E11M2V9 Θ 1NO+1NC	FP 556-M2 Θ 1NO+1NC
6	L	FP 651-M2 Θ 1NO+1NC	FP 652-M2 Θ 1NO+1NC	FP 653-E11M2V9 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FP 656-M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$
7	L0	FP 751-M2 $\Theta 1$ NO+1NC	FP 752-M2 Θ 1NO+1NC	FP 753-E11M2V9 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FP 756-M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$
9	L	FP 951-M2 Θ 2NC	FP 952-M2 Θ 2NC	FP 953-E11M2V9 Θ 2NC	FP 956-M2 Θ 2NC
10	L	FP 1051-M2 2NO	FP 1052-M2 2NO	FP 1053-E11M2V9 2NO	FP 1056-M2 2NO
11	R	FP 1151-M2 Θ 2NC	FP 1152-M2 Θ 2NC		FP 1156-M2 Θ 2NC
12	R	FP 1251-M2 2NO	FP 1252-M2 2NO	FP 1253-E11M2V9 2NO	FP 1256-M2 2NO
13	LV	FP 1351-M2 Θ 2NC	FP 1352-M2 Θ 2NC	FP 1353-E11M2V9 Θ 2NC	FP 1356-M2 Θ 2NC
14	LS	FP 1451-M2 Θ 2NC	FP 1452-M2 Θ 2NC	FP 1453-E11M2V9 Θ 2NC	FP 1456-M2 Θ 2NC
15	LS	FP 1551-M2 2NO	FP 1552-M2 2NO	FP 1553-E11M2V9 2NO	FP 1556-M2 2NO
16	LI				FP 1656-M2 Θ 2NC
18	LA	FP 1851-M2 Θ 1NO+1NC	FP 1852-M2 Θ 1 ${ }^{\text {NO}}+1 \mathrm{NC}$	FP 1853-E11M2V9 Θ 1NO+1NC	FP 1856-M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$
20	L	FP 2051-M2 Θ 1NO+2NC	FP 2052-M2 Θ 1NO+2NC	FP 2053-E11M2V9 Θ 1NO+2NC	FP 2056-M2 Θ 1NO+2NC
21	L	FP 2151-M2 $\Theta 3 N \mathrm{C}$	FP 2152-M2 Θ 3NC	FP 2153-E11M2V9 $\Theta 3 N C$	FP 2156-M2 $\Theta 3 \mathrm{NC}$
22	L	FP 2251-M2 Θ 2NO+1NC	FP 2252-M2 Θ 2NO+1NC	FP 2253-E11M2V9 $¢ 2 \mathrm{NO}+1 \mathrm{NC}$	FP 2256-M2 Θ 2NO+1NC
2	R	FP 251-M2 2x(1NO-1NC)	FP 252-M2 2x(1NO-1NC)	FP 253-E11M2 2x(1NO-1NC)	FP 256-M2 2x(1NO-1NC)
E1	㒳	FP E151-M2 1NO-1NC	FP E152-M2 1NO-1NC	FP E153-E11M2V9 1NO-1NC	FP E156-M2 1NO-1NC
	speed	page 237 - type 1	page 237 - type 1	$0.5 \mathrm{~m} / \mathrm{s}$	page 237 - type 1
		$0.06 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.06 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.03 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.1 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$
	agrams	page 238 - group 4	page 238 - group 4	page 238 - group 5	page 238 - group 4

${ }^{(1)}$ Positive opening only with actuator set to max. See page 37.

	Other rollers available. See on page 38	With stainless steel roller on request	With stainless steel roller on request	Rope switch for signalling
Contact type: \mathbf{R} = snap action \mathbf{L} = slow action LO = slow action overlapped LS = slow action shifted LV = slow action shifted and spaced $\mathbf{L I}$ = slow action independent LA = slow action closer 六 $=$ electronic PNP Contact blocks				
5 R	FP 557-M2 Θ 1NO+1NC	FP 541-M2 Θ 1NO+1NC	FP 542-M2 Θ 1NO+1NC	FP 576-M2 1NO+1NC
6 L	FP 657-M2 Θ 1NO+1NC	Bistable switch with single track lyra	Bistable switch with dual track lyra	FP 676-M2 1NO+1NC
7 LO	FP 757-M2 Θ 1NO+1NC	lever	lever	FP 776-M2 1NO+1NC
$9 \square$	FP 957-M2 Θ 2NC			FP 976-M2 2NO
10 L	FP 1057-M2 2NO			FP 1076-M2 2NC
11 R	FP 1157-M2 Θ 2NC)	*	FP 1176-M2 2NO
12 R	FP 1257-M2 2NO	2) 15	2) $)$	FP 1276-M2 2NC
13 LV	FP 1357-M2 Θ 2NC	\bigcirc	(0) -	FP 1376-M2 2NO
14 LS	FP 1457-M2 Θ 2NC	(${ }^{(3)}$	- 0	FP 1476-M2 2 NO
15 LS	FP 1557-M2 2NO	(1	FP 1576-M2 2NC
16 L	FP 1657-M2 Θ 2NC			
18 LA	FP 1857-M2 Θ 1NO+1NC			FP 1876-M2 1NO+1NC
20 L	FP 2057-M2 Θ 1NO+2NC	$45^{\circ} 65^{\circ} \oplus 80^{\circ} 90^{\circ}$	$45^{\circ} 65^{\circ} \oplus 80^{\circ} 90^{\circ}$	FP 2076-M2 2NO+1NC
21 L	FP 2157-M2 $\Theta 3 \mathrm{NC}$			FP 2176-M2 3NO
22 L	FP 2257-M2 Θ 2NO+1NC		$25^{\circ} \mathrm{S}$	FP 2276-M2 1NO+2NC
2 R	FP 257-M2 2x(1NO-1NC)	$S=$ mechanical switching point positive opening on contact 21-22 only	$\mathrm{S}=$ mechanical switching point positive opening on contact 21-22 only	FP 276-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC}$)
E1 A	FP E157-M2 1NO-1NC			
Max. speed	page 237 - type 1	$0.5 \mathrm{~m} / \mathrm{s}$ with cam at 30°	$0.5 \mathrm{~m} / \mathrm{s}$ with cam at 30°	$0.5 \mathrm{~m} / \mathrm{s}$
Min. force	$0.1 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.21 \mathrm{Nm}(0.36 \mathrm{Nm} \Theta)$	$0.21 \mathrm{Nm}(0.36 \mathrm{Nm} \Theta)$	initial 20 N - final 40 N
Travel diagrams	page 238 - group 4			page 238-group 6

All measures in the drawings are in mm

Position switches with revolving lever without actuator

Contact type:		Regular head	Compact head	
5	R	FP 538-M2 Θ 1NO+1NC	FP 558-M2 Θ 1NO+1NC	FP 540-M2 Θ 1NO+1NC
6	L	FP 638-M2 Θ 1NO+1NC	FP 658-M2 Θ 1NO+1NC	Bistable switch
7	L0	FP 738-M2 Θ 1NO+1NC	FP 758-M2 Θ 1NO+1NC	
9	\square	FP 938-M2 Θ 2NC	FP 958-M2 Θ 2NC	$0 \quad 45^{\circ} 65^{\circ} \oplus 80^{\circ} 90^{\circ}$
10	L	FP 1038-M2 2NO	FP 1058-M2 2NO	
11	R	FP 1138-M2 Θ 2NC	FP 1158-M2 Θ 2NC	S = mechanical switching point
12	R	FP 1238-M2 2NO	FP 1258-M2 2NO	positive opening on contact 21-22 only
13	LV	FP 1338-M2 Θ 2NC	FP 1358-M2 Θ 2NC	
14	LS	FP 1438-M2 Θ 2NC	FP 1458-M2 Θ 2NC	
15	LS	FP 1538-M2 2NO	FP 1558-M2 2NO	
16	L	FP 1638-M2 Θ 2NC		
18	LA	FP 1838-M2 Θ 1NO+1NC	FP 1858-M2 Θ 1NO+1NC	
20	L	FP 2038-M2 Θ 1NO+2NC	FP 2058-M2 Θ 1NO+2NC	
21	L	FP 2138-M2 Θ 3NC	FP 2158-M2 Θ 3NC	
22	L	FP 2238-M2 Θ 2NO+1NC	FP 2258-M2 Θ 2NO+1NC	
2	R	FP 238-M2 2x(1NO-1NC)	FP 258-M2 2x(1NO-1NC)	
E1	同	FP E138-M2 1NO+1NC	FP E158-M2 1NO+1NC	
Min. force		$0.1 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.06 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.5 \mathrm{~m} / \mathrm{s}$ with cam at 30°
Travel diagrams		page 238 - group 4	page 238 - group 4	$0.21 \mathrm{Nm}(0.36 \mathrm{Nm} \Theta)$

All measures in the drawings are in mm

IMPORTANT

For safety applications: join only switches and actuators marked with symbol Θ aside the product code.
For more information about safety applications see details on page 235.

[^1]Special loose actuators
IMPORTANT: These loose actuators can be used with items of series FD, FP, FL, FC only.
Stainless steel rollers, $\varnothing 20$ mm

VF L31-R24 Θ	VF L35-R24 $\Theta{ }^{(1)}{ }^{(3)}$	VF L51-R24 Θ	VF L52-R24 Θ	VF L56-R24 $\Theta{ }^{\text {(3) }}$	VF L57-R24 Θ

Technopolymer rollers, Ø 35 mm

VF L31-R25 $\Theta{ }^{(4)}$	VF L35-R25 Θ (1) (3)	VF L51-R25 $\Theta{ }^{(4)}$	VF L52-R25 Θ	VF L56-R25 $\Theta{ }^{\text {(3) }}$	VF L57-R25 Θ

Rubber rollers, $\varnothing 40 \mathrm{~mm}$

VF L31-R5 Θ (4)	VF L35-R5 ${ }^{(1)}{ }^{(3)}$	VF L51-R5 Θ (4)	VF L52-R5 Θ	VF L56-R5 $\underbrace{(3)}$	VF L57-R5 Θ (4)

Rubber rollers, $\varnothing 50 \mathrm{~mm}$

VF L31-R26 Θ (4)	VF L35-R26 $\Theta{ }^{(1)}{ }^{(3)}$	VF L51-R26 $\Theta{ }^{\text {(4) }}$	VF L52-R26 $\Theta{ }^{\text {(4) }}$	VF L56-R26 $\Theta{ }^{\text {(3) }}$	VF L57-R26 Θ (4)

Protruding rubber rollers, $\varnothing 50 \mathrm{~mm}$

VF L35-R27 $\Theta{ }^{(1)(3)}$	VF L56-R27 $\Theta{ }^{\text {(3) }}$

Selection diagram

Code structure

 Attention! The feasibility of a code number does not mean the effective availability of a product. Please contact our sales office.

Contact type
silver contacts (standard)
G silver contacts with $1 \mu \mathrm{~m}$ gold coating (not for contact block 2)

Threaded conduit
entries
M2 M20×1.5 (standard)
PG 13.5

Main features

- Metal housing, three conduit entries
- Protection degree IP67
- 17 contact blocks available
- 28 actuators available
- Versions with M12 connector
- Versions with gold-plated silver contacts

Technical data

Housing

Metal housing, baked powder coating
Three threaded conduit entries:
Protection degree:
M20x1.5 (standard)
IP67 according to EN 60529 with cable gland having equal or higher protection degree

General data

Ambient temperature:
Max. actuation frequency:
Mechanical endurance:
Mounting position:
Safety parameters:
$\mathrm{B}_{10 \mathrm{~d}}$:
Mechanical interlock, not coded:
Tightening torques for installation:
(1) One operation cycle means two movements, one to close and one to open contacts, as defined in EN 60947-5-1.

Cable cross section (flexible copper strands)

Contact blocks 20, 21, 22, 33, 34:

Contact block 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 18:

Contact block 2:

In conformity with standards:

IEC 60947-5-1, EN 60947-5-1, EN 60947-1, IEC 60204-1, EN 60204-1, EN ISO 14119, EN ISO 12100, IEC 60529, EN 60529, UL 508, CSA 22.2 No. 14

Approvals:

IEC 60947-5-1, UL 508, CSA 22.2 No.14, GB14048.5-2001.

In conformity with the requirements of:

Low Voltage Directive 2006/95/EC, Machinery Directive 2006/42/EC and
EMC Directive 2004/108/EC.
Positive contact opening in conformity with standards:
IEC 60947-5-1, EN 60947-5-1, VDE 0660-206.

IMQ approval:	
EG605	
UL approval:	
C131787	
ECC approval:	
EAC approval:	RU C-IT ДM94.B.01024

Installation for safety applications:
Use only switches marked with the symbol Θ aside the product code. Always connect the safety circuit to the NC contacts (normally closed contacts: 11-12, 21-22 or 31-32) as stated in standard EN 60947-5-1, encl. K, par. 2. Actuate the switch at least up to the positive opening travel shown in the travel diagrams on page 238. Operate the switch at least with the positive opening force, indicated between brackets below each article, aside the minimum force value.
§ If not expressly indicated in this chapter, for correct installation and utilization of all articles see chapter utilization requirements from page 235 to page 246.

Electrical data			Utilization category			
	Thermal current (Ith): Rated insulation voltage (Ui):	10 A 500 Vac 600 Vdc 400 Vac 500 Vdc (contact blocks 2, 11, 12, 20, 21, 22, 33, 34) 6 kV 4 kV (contact blocks 20, 21, 22, 33, 34) 1000 A according to EN 60947-5-1 type aM fuse 10 A 500 V 3	Alternating current: AC15 (50 $\div 60 \mathrm{~Hz}$)			
			Ue (V)	250	400	500
			le (A)	6	4	1
	Rated impulse withstand voltage $\left(\mathrm{U}_{\text {imp }}\right)$: Conditional short circuit current: Protection against short circuits: Pollution degree:		Direct current: DC13			
			Ue (V)	24	125	250
			le (A)	6	1.1	0.4
	Thermal current (Ith): Rated insulation voltage (Ui): Protection against short circuits: Pollution degree:	```4A 250 Vac 300 Vdc type gG fuse 4 A 500 V 3```	Alternating current: AC15 (50 $\div 60 \mathrm{~Hz}$)			
			Ue (V)	24	120	250
			le (A)	4	4	4
			Direct	ent: D		
			Ue (V)	24	125	250
			le (A)	4	1.1	0.4
	Thermal current (Ith): Rated insulation voltage (Ui): Protection against short circuits: Pollution degree:	```2 A 30 Vac 36 Vdc type gG fuse 2 A 500 V 3```	Alternating current: AC15 $(50 \div 60 \mathrm{~Hz})$ Ue (V) 24			
			le (A)	2		
			Direct	ent: D		
			Ue (V)	24		
			le (A)	2		

Characteristics approved by IMO

Rated insulation voltage (Ui): 500 Vac

400 Vac (for contact blocks 2, 11, 12, 20, 21, $22,33,34)$
Conventional free air thermal current (lth): 10 A
Protection against short circuits: type aM fuse 10 A 500 V
Rated impulse withstand voltage ($U_{\text {imp }}$): 6 kV
4 kV (for contact blocks 20, 21, 22, 33, 34)
Protection degree of the housing: IP67
MV terminals (screw terminals)
Pollution degree 3
Utilization category: AC15
Operating voltage (Ue): $400 \mathrm{Vac}(50 \mathrm{~Hz})$
Operating current (le): 3 A
Forms of the contact element: $\mathrm{Za}, \mathrm{Zb}, \mathrm{Za}+\mathrm{Za}, \mathrm{Y}+\mathrm{Y}, \mathrm{X}+\mathrm{X}, \mathrm{Y}+\mathrm{Y}+\mathrm{X}, \mathrm{Y}+\mathrm{Y}+\mathrm{Y}, \mathrm{Y}+\mathrm{X}+\mathrm{X}$
Positive opening of contacts on contact blocks $5,6,7,9,11,13,14,16,18,20$,
$21,22,33,34$
In conformity with standards: EN 60947-1, EN 60947-5-1+ A1:2009, fundamental requirements of the Low Voltage Directive 2006/95/EC.
Please contact our technical service for the list of approved products.

Characteristics approved by UL

Utilization categories Q300 (69 VA, 125 ... 250 Vdc)
A600 (720 VA, $120 \ldots 600 \mathrm{Vac}$)
Data of housing type $1,4 \mathrm{X}$ "indoor use only", 12,13
For all contact blocks except 2 and 3 use 60 or $75^{\circ} \mathrm{C}$ copper (Cu) conductor, rigid or flexible, wire size AWG $12 / 14$. Terminal tightening torque of 7.1 lb in $(0.8 \mathrm{Nm})$.
For contact blocks 2 and 3 use 60 or $75^{\circ} \mathrm{C}$ copper (Cu) conductor, rigid or flexible, wire size AWG 14. Terminal tightening torque of 12 lb in (1.4 Nm).

In conformity with standard: UL 508, CSA 22.2 No. 14

Please contact our technical service for the list of approved products.

Connection diagram for M12 connectors

Contact block 2 $1 \mathrm{NO}-1 \mathrm{NC}+1 \mathrm{NO}-1 \mathrm{NC}$	Contact block 5 $1 \mathrm{NO}+1 \mathrm{NC}$	Contact block 6 $1 \mathrm{NO}+1 \mathrm{NC}$	$\begin{gathered} \text { Contact block } 7 \\ 1 N O+1 N C \end{gathered}$	Contact block 9 2NC	$\begin{gathered} \text { Contact block } 10 \\ 2 \mathrm{NO} \end{gathered}$	Contact block 11 2NC	Contact block 12 2NO	Contact block 13 2NC
M12 connector, 8 poles	M12 connector, 5 poles							
Contacts Pin no. NO $\quad 3-4$	Contacts Pin no. NC $\quad 1-2$	Contacts Pin no NC $\quad 1-2$	Contacts Pin no NC 1-2	Contacts Pin no NC $\quad 1-2$	Contacts Pin no. NO 1-2	Contacts Pin no. NC $\quad 1-2$	Contacts Pin no. NO $\quad 1-2$	Contacts Pin no NC (19) 1-2
NC 5-6	NO 3-4	NO 3-4	NO 3-4	NC 3-4	NO 3-4	NC 3-4	NO 3-4	NC (2) ${ }^{\circ} \mathrm{3}-4$
NC 7-8	ground 5							
NO 1-2								

Contact block 14 2NC	Contact block 15 2NO	Contact block 16 2NC	$\begin{gathered} \text { Contact block } 18 \\ 1 \mathrm{NO}+1 \mathrm{NC} \end{gathered}$	$\begin{gathered} \text { Contact block } 20 \\ 2 N C+1 N O \end{gathered}$	Contact block 21 3NC	$\begin{gathered} \text { Contact block } 22 \\ 1 \mathrm{NC}+2 \mathrm{NO} \end{gathered}$	$\begin{gathered} \text { Contact block } 33 \\ 1 \mathrm{NC}+1 \mathrm{NO} \end{gathered}$	Contact block 34 2NC
M12 connector, 5 poles	M12 connector, 8 poles	M12 connector, 8 poles	M12 connector, 8 poles	M12 connector, 5 poles	M12 connector, 5 poles			
Contacts Pin no. NC (1) $\quad 1-2$	Contacts Pin no. $N O\left(1^{\circ}\right) \quad 1-2$	Contacts Pin no. NC, lever at the right 1-2	$\begin{array}{cc} \hline \text { Contacts } & \text { Pin no. } \\ \text { NC } & 1-2 \end{array}$	$\begin{array}{cc} \text { Contacts } & \text { Pin no. } \\ \text { NC } & 3-4 \end{array}$	$\begin{array}{cc} \text { Contacts } & \text { Pin no. } \\ \text { NC } & 3-4 \end{array}$	$\begin{array}{cc} \text { Contacts } & \text { Pin no. } \\ \text { NC } & 3-4 \end{array}$	$\begin{array}{cc} \hline \text { Contacts } & \text { Pin no. } \\ \text { NC } & 1-2 \end{array}$	$\begin{array}{cc} \hline \text { Contacts } & \text { Pin no. } \\ \text { NC } & 1-2 \end{array}$
NC (2°) $\quad 3-4$	NO (29) 3-4	NC, lever to the left 3-4	NO 3-4	NC 5-6	NC 5-6	NO 5-6	NO 3-4	NC 3-4
ground 5	ground 5	ground 5	ground 5	NO 7-8	NC 7-8	NO 7-8	ground	ground
				ground 1	ground 1	ground 1		

Contact block E1 PNP

M12 connector, 5 poles

Contacts	Pin no.
+	1
-	3
NC	2
NO	4
ground	5

Contact blocks			With external rubber gasket		With external rubber gasket
5	R	FL 508-M2 Θ 1 ${ }^{1 \mathrm{O}+1 \mathrm{NC} \text {. }}$	FL 510-M2 Θ 1 ${ }^{\text {NO}+1 N C}$	FL 511-M2 Θ 1 ${ }^{\text {NO+1NC }}$	FL 515-M2 Θ (${ }^{1 N O+1 N C}$
6	\square	FL 608-M2 Θ 1 ${ }^{\text {NO+1NC }}$	FL 610-M2 Θ 1 ${ }^{\text {NO}+1 N C}$	FL 611-M2 Θ 1 ${ }^{\text {NO+1NC }}$	FL 615-M2 Θ 1NO+1NC
7	L0	FL 708-M2 $\odot 1$ 1NO+1NC	FL 710-M2 $\odot 1$ 1NO+1NC	FL 711-M2 $\odot 1 \mathrm{NO}+1 \mathrm{NC}$	FL 715-M2 Θ 1NO+1NC
9	\square	FL 908-M2 Θ 2NC	FL 910-M2 Θ 2NC	FL 911-M2 Θ 2NC	FL 915-M2 \bigodot 2NC
10	\square	FL 1008-M2 2NO	FL 1010-M2 2NO	FL 1011-M2 2NO	FL 1015-M2 2NO
11	R	FL 1108-M2 ¢ $^{2 N C}$	FL 1110-M2 $\underbrace{2 N C}$	FL 1111-M2 \oplus 2NC	FL 1115-M2 Θ 2NC
12	R	FL 1208-M2 2NO	FL 1210-M2 2NO	FL 1211-M2 2NO	FL 1215-M2 2NO
13	LV	FL 1308-M2 Θ 2NC	FL 1310-M2 Θ 2NC	FL 1311-M2 Θ 2NC	FL 1315-M2 Θ 2NC
14	LS	FL 1408-M2 Θ 2NC	FL 1410-M2 Θ 2NC	FL 1411-M2 Θ 2NC	FL 1415-M2 Θ 2NC
15	LS	FL 1508-M2 2NO	FL 1510-M2 2NO	FL 1511-M2 2NO	FL 1515-M2 2NO
18	LA	FL 1808-M2 Θ 1 ${ }^{\text {NO}+1 N C}$	FL 1810-M2 \odot 1NO+1NC $^{\text {d }}$	FL 1811-M2 Θ 1 ${ }^{\text {NO+1NC }}$	FL 1815-M2 Θ 1 ${ }^{\text {NO}+1 N C}$
20	\square	FL 2008-M2 Θ 1NO+2NC	FL 2010-M2 Θ 1NO+2NC	FL 2011-M2 Θ 1NO+2NC	FL 2015-M2 Θ 1NO+2NC
21	\square	FL 2108-M2 Θ 3NC	FL 2110-M2 Θ 3NC	FL 2111-M2 Θ 3NC	FL 2115-M2 ¢ $^{\text {3NC }}$
22	\square	FL 2208-M2 Θ 2NO+1NC	FL 2210-M2 $\Theta 2 \mathrm{NO}+1 \mathrm{NC}$	FL 2211-M2 $\odot 2 \mathrm{NO}+1 \mathrm{NC}$	FL 2215-M2 Θ 2NO+1NC
2	R	FL 208-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC)}$	FL 210-M2 2x(1NO-1NC)	FL 211-M2 2x(1NO-1NC)	FL 215-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC)}$
E1	因	FL E108-M2 1NO-1NC	FL E110-M2 1NO-1NC	FL E111-M2 1NO-1NC	FL E115-M2 1NO-1NC
Max. speed		page 237 - type 4	page 237 - type 4	page 237 - type 4	page 237 - type 2
Min. force		$8 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$11 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$8 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$11 \mathrm{~N}(25 \mathrm{~N} \Theta)$
Travel diagrams		page 238 - group 1			

All measures in the drawings are in mm

		Ball, $\varnothing 8$ mm, stainless steel	Ball, $\varnothing 12.7 \mathrm{~mm}$, stainless steel	With external rubber gasket
Contact type: = snap action = slow action LO = slow action LS = slow action shifted LV $=$ slow action shifted and shifted and spaced LI = slow action independent LA = slow action closer =electronic PNP Contact blocks				
5 R	FL 516-M2 Θ 1NO+1NC	FL 518-M2 Θ 1NO+1NC	FL 519-M2 Θ 1NO+1NC	FL 520-M2 1NO+1NC
6 L	FL 616-M2 Θ 1NO+1NC	FL 618-M2 Θ 1NO+1NC	FL 619-M2 Θ 1NO+1NC	
7 L0	FL 716-M2 Θ 1NO+1NC	FL 718-M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FL 719-M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	
9 L	FL 916-M2 Θ 2NC	FL 918-M2 Θ 2NC	FL 919-M2 Θ 2NC	
10 L	FL 1016-M2 2NO	FL 1018-M2 2NO	FL 1019-M2 2NO	FL 1020-M2 2NO
11 R	FL 1116-M2 Θ 2NC	FL 1118-M2 Θ 2NC	FL 1119-M2 Θ 2NC	
12 R	FL 1216-M2 2NO	FL 1218-M2 2NO	FL 1219-M2 2NO	
13 LV	FL 1316-M2 Θ 2NC	FL 1318-M2 Θ 2NC	FL 1319-M2 Θ 2NC	
14 LS	FL 1416-M2 Θ 2NC	FL 1418-M2 Θ 2NC	FL 1419-M2 Θ 2NC	
15 LS	FL 1516-M2 2NO	FL 1518-M2 2NO	FL 1519-M2 2NO	
18 LA	FL 1816-M2 Θ 1NO+1NC	FL 1818-M2 Θ 1NO+1NC	FL 1819-M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FL 1820-M2 1NO+1NC
20 L	FL 2016-M2 Θ 1NO+2NC	FL 2018-M2 Θ 1NO+2NC	FL 2019-M2 Θ 1NO+2NC	FL 2020-M2 1NO+2NC
21 L	FL 2116-M2 Θ 3NC	FL 2118-M2 $\Theta 3 \mathrm{NC}$	FL 2119-M2 $\Theta 3 \mathrm{NC}$	FL 2120-M2 3NC
22 L	FL 2216-M2 Θ 2NO+1NC	FL 2218-M2 Θ 2NO+1NC	FL 2219-M2 Θ 2NO+1NC	FL 2220-M2 2NO+1NC
2 R	FL 216-M2 2x(1NO-1NC)	FL 218-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC)}$	FL 219-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC})$	FL 220-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC}$)
E1 \quad 亩	FL E116-M2 1NO-1NC	FL E118-M2 1NO-1NC	FL E119-M2 1NO-1NC	FL E120-M2 1NO-1NC
Max. speed	page 237 - type 2	page 237 - type 4	page 237 - type 4	$1 \mathrm{~m} / \mathrm{s}$
Min. force	$8 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$8 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$8 \mathrm{~N}(25 \mathrm{~N} \Theta)$	0.09 Nm
Travel diagrams	page 238 - group 1	page 238 - group 1	page 238 - group 1	page 238 - group 3

Contact blocks		Other rollers available. See on page 48	Other rollers available. See on page 48	Porcelain roller	Other rollers available. See on page
5	R	FL 551-M2 Θ 1NO+1NC	FL 552-M2 Θ 1NO+1NC	FL 553-E11M2V9 Θ 1NO+1NC	FL 556-M2 Θ 1NO+1NC
6	L	FL 651-M2 Θ 1NO+1NC	FL 652-M2 Θ 1NO+1NC	FL 653-E11M2V9 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FL 656-M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$
7	LO	FL 751-M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FL 752-M2 Θ 1NO+1NC	FL 753-E11M2V9 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FL 756-M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$
9	L	FL 951-M2 Θ 2NC	FL 952-M2 Θ 2NC	FL 953-E11M2V9 Θ 2NC	FL 956-M2 Θ 2NC
10	L	FL 1051-M2 2NO	FL 1052-M2 2NO	FL 1053-E11M2V9 2NO	FL 1056-M2 2NO
11	R	FL 1151-M2 Θ 2NC	FL 1152-M2 Θ 2NC		FL 1156-M2 Θ 2NC
12	R	FL 1251-M2 2NO	FL 1252-M2 2NO	FL 1253-E11M2V9 2NO	FL 1256-M2 2NO
13	LV	FL 1351-M2 Θ 2NC	FL 1352-M2 Θ 2NC	FL 1353-E11M2V9 Θ 2NC	FL 1356-M2 Θ 2NC
14	LS	FL 1451-M2 Θ 2NC	FL 1452-M2 Θ 2NC	FL 1453-E11M2V9 $\Theta 2 N C$	FL 1456-M2 Θ 2NC
15	LS	FL 1551-M2 2NO	FL 1552-M2 2NO	FL 1553-E11M2V9 2NO	FL 1556-M2 2NO
16	LI				FL 1656-M2 Θ 2NC
18	LA	FL 1851-M2 Θ 1NO+1NC	FL 1852-M2 Θ 1 ${ }^{\text {NO}}+1 \mathrm{NC}$	FL 1853-E11M2V9 Θ 1NO+1NC	FL 1856-M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$
20	L	FL 2051-M2 Θ 1NO+2NC	FL 2052-M2 Θ 1NO+2NC	FL 2053-E11M2V9 $\Theta 1 \mathrm{NO}+2 \mathrm{NC}$	FL 2056-M2 $\Theta 1$ NO+2NC
21	L	FL 2151-M2 $\Theta 3 \mathrm{NC}$	FL 2152-M2 $\Theta 3 \mathrm{NC}$	FL 2153-E11M2V9 $\Theta 3$ NC	FL 2156-M2 $\Theta 3 \mathrm{NC}$
22	L	FL 2251-M2 $\Theta 2 \mathrm{NO}+1 \mathrm{NC}$	FL 2252-M2 Θ 2NO+1NC	FL 2253-E11M2V9 $\Theta 2 N O+1 \mathrm{NC}$	FL 2256-M2 Θ 2NO+1NC
2	R	FL 251-M2 2x(1NO-1NC)	FL 252-M2 2x(1NO-1NC)	FL 253-E11M2 2x(1NO-1NC)	FL 256-M2 2x(1NO-1NC)
E1	同	FL E151-M2 1NO-1NC	FL E152-M2 1NO-1NC	FL E153-E11M2V9 1NO-1NC	FL E156-M2 1NO-1NC
Max. speed		page 237 - type 1	page 237 - type 1	$0.5 \mathrm{~m} / \mathrm{s}$	page 237 - type 1
Min. force		$0.06 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.06 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.03 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.1 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$
Travel diagrams		page 238 - group 4	page 238 - group 4	page 238 - group 5	page 238 - group 4

${ }^{(1)}$ Positive opening only with actuator set to max. See page 47.

	Other rollers available. See on page 48	With stainless steel roller on request	With stainless steel roller on request	Rope switch for signall
Contact type:				
5 R	FL 557-M2 Θ 1NO+1NC	FL 541-M2 Θ 1NO+1NC	FL 542-M2 Θ 1NO+1NC	FL 576-M2 1NO+1NC
6 L	FL 657-M2 Θ 1NO+1NC	Bistable switch with single track lyra	Bistable switch with dual track lyra	FL 676-M2 1NO+1NC
7 L0	FL 757-M2 Θ 1NO+1NC	lever	lever	FL 776-M2 1NO+1NC
$9 \square$	FL 957-M2 Θ 2NC			FL 976-M2 2NO
10 L	FL 1057-M2 2NO			FL 1076-M2 2NC
11 R	FL 1157-M2 Θ 2NC			FL 1176-M2 2NO
12 R	FL 1257-M2 2NO	1		FL 1276-M2 2NC
13 LV	FL 1357-M2 Θ 2NC	-	(o)d -	FL 1376-M2 2NO
14 LS	FL 1457-M2 Θ 2NC)		FL 1476-M2 2NO
15 LS	FL 1557-M2 2NO	1 (1)		FL 1576-M2 2NC
16 L	FL 1657-M2 Θ 2NC	,	,	
18 LA	FL 1857-M2 Θ 1NO+1NC		λ	FL 1876-M2 1NO+1NC
20 L	FL 2057-M2 Θ 1NO+2NC			FL 2076-M2 2NO+1NC
21 L	FL 2157-M2 $\Theta 3 \mathrm{NC}$			FL 2176-M2 3NO
22 L	FL 2257-M2 Θ 2NO+1NC			FL 2276-M2 1NO+2NC
2 R	FL 257-M2 2x(1NO-1NC)	$S=$ mechanical switching point	S = mechanical switching point	FL 276-M2 2x(1NO-1NC)
E1 大	FL E157-M2 1NO-1NC		positive opening on contact 21-22 only	
Max. speed	page 237 - type 1	$0.5 \mathrm{~m} / \mathrm{s}$ with cam at 30°	$0.5 \mathrm{~m} / \mathrm{s}$ with cam at 30°	$0.5 \mathrm{~m} / \mathrm{s}$
Min. force	$0.1 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.21 \mathrm{Nm}(0.36 \mathrm{Nm} \Theta)$	$0.21 \mathrm{Nm}(0.36 \mathrm{Nm} \Theta)$	initial 20 N - final 40 N
Travel diagrams	page 238 - group 4			page 238 - group 6

All measures in the drawings are in mm

Position switches with revolving lever without actuator

Contact type:$\left.\left.\begin{array}{c\|c} \hline \mathbf{R} & =\text { snap action } \\ \hline \mathbf{L} & =\text { slow action } \\ \hline \mathbf{L O} & =\text { slow action } \\ \text { overlapped } \end{array}\right\} \begin{array}{cl} \mathbf{L S} & =\text { slow action } \\ \text { shifted } \end{array}\right\}$		Regular head	Compact head	
5	R	FL 538-M2 Θ 1NO+1NC	FL 558-M2 Θ 1NO+1NC	FL 540-M2 Θ 1NO+1NC
6	L	FL 638-M2 Θ 1NO+1NC	FL 658-M2 Θ 1NO+1NC	Bistable swit
7	L0	FL 738-M2 Θ 1NO+1NC	FL 758-M2 Θ 1NO+1NC	
9	L	FL 938-M2 Θ 2NC	FL 958-M2 Θ 2NC	$0 \quad 45^{\circ} 65^{\circ} \oplus 80^{\circ} 90^{\circ}$
10	L	FL 1038-M2 2NO	FL 1058-M2 2NO	$25^{\circ} \mathrm{S}$
11	R	FL 1138-M2 Θ 2NC	FL 1158-M2 Θ 2NC	$\mathrm{S}=$ mechanical switching point
12	R	FL 1238-M2 2NO	FL 1258-M2 2NO	positive opening on contact 21-22 only
13	LV	FL 1338-M2 Θ 2NC	FL 1358-M2 Θ 2NC	
14	LS	FL 1438-M2 Θ 2NC	FL 1458-M2 Θ 2NC	
15	LS	FL 1538-M2 2NO	FL 1558-M2 2NO	
16	L	FL 1638-M2 Θ 2NC		
18	LA	FL 1838-M2 Θ 1NO+1NC	FL 1858-M2 Θ 1NO+1NC	
20	L	FL 2038-M2 $\Theta 1 \mathrm{NO}+2 \mathrm{NC}$	FL 2058-M2 $\Theta 1 \mathrm{NO}+2 \mathrm{NC}$	
21	L	FL 2138-M2 $\Theta 3 \mathrm{NC}$	FL 2158-M2 $\Theta 3 N C$	
22	L	FL 2238-M2 Θ 2NO+1NC	FL 2258-M2 Θ 2NO+1NC	
2	R	FL 238-M2 2x(1NO-1NC)	FL 258-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC})$	
E1	同	FL E138-M2 1NO-1NC	FL E158-M2 1NO-1NC	
Min. force		$0.1 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.06 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.5 \mathrm{~m} / \mathrm{s}$ with cam at 30°
Travel diagrams		page 238 - group 4	page 238 - group 4	$0.21 \mathrm{Nm}(0.36 \mathrm{Nm} \Theta)$

All measures in the drawings are in mm

IMPORTANT

For safety applications: join only switches and actuators marked with symbol Θ aside the product code.
For more information about safety applications see details on page 235.

All measures in the drawings are in mm

Loose actuators All measures in the drawings are in mm									
IMPORTANT: These loose actuators can be used with items of series FD, FP, FL, FC only.									
Technopolymer roller $\varnothing 20 \mathrm{~mm}$	Adjustable round rod $\varnothing 3 \times 125 \mathrm{~mm}$	Adjustable square rod $3 \times 3 \times 125 \mathrm{~mm}$		Flexible rod with pointed end		Adjustable actuator with technopolymer roller		Adjustable fiber glass rod	
VF L31 Θ	VF L32 ${ }^{(3)}$	VF L33 ${ }^{(3)}$		VF L34		VF L35 $\Theta{ }^{(1)(3)}$		VF L36 ${ }^{(3)}$	
Single track lyra actuator	Dual track lyra actuator	Technopolymer roller, \varnothing 20 mm	Technopolymer roller, \varnothing 20 mm		Porcelain roller		Adjustable safety actuator with technopolymer roller	Technopolymer roller, \varnothing20 mm	
				(Q)					
VF L41 Θ	VF L42 Θ	VF L51 Θ		VF L52 Θ	VF L53	$\Theta{ }^{(2)}$	VF L56 $\Theta{ }^{(3)}$		VF L57 Θ

[^2]Special loose actuators
IMPORTANT: These loose actuators can be used with items of series FD, FP, FL, FC only.
Stainless steel rollers, $\varnothing 20 \mathrm{~mm}$

VF L31-R24 Θ	VF L35-R24 $\Theta{ }^{(1)}$ (3)	VF L51-R24 Θ	VF L52-R24 Θ	VF L56-R24 $\Theta{ }^{(3)}$	VF L57-R24 Θ

Technopolymer rollers, Ø 35 mm

VF L31-R25 $\Theta{ }^{(4)}$	VF L35-R25 ${ }^{(1)}{ }^{(3)}$	VF L51-R25 $\underbrace{(4)}$	VF L52-R25 Θ	VF L56-R25 $\Theta{ }^{\text {(3) }}$	VF L57-R25 Θ

Rubber rollers, $\varnothing 40 \mathrm{~mm}$

VF L31-R5 Θ (4)	VF L35-R5 ${ }^{(1)}{ }^{(3)}$	VF L51-R5 Θ (4)	VF L52-R5 Θ	VF L56-R5 $\underbrace{(3)}$	VF L57-R5 Θ (4)

Rubber rollers, $\varnothing 50 \mathrm{~mm}$

VF L31-R26 $\Theta{ }^{(4)}$	VF L35-R26 ${ }^{(1)}{ }^{(3)}$	VF L51-R26 $\Theta{ }^{\text {(4) }}$	VF L52-R26 $\Theta{ }^{(4)}$	VF L56-R26 $\underbrace{(3)}$	VF L57-R26 $\Theta{ }^{\text {(4) }}$

Protruding rubber rollers, $\varnothing 50 \mathrm{~mm}$

VF L35-R27 $\Theta{ }^{(1)(3)}$	VF L56-R27 $\underbrace{(3)}$

Selection diagram

CONDUIT ENTRY

Threaded conduit entry	
M2	M20x1.5 (standard)
	PG 11

With cable gland	
K23	
	for cables
	$\varnothing 6 \ldots \varnothing 12 \mathrm{~mm}$
K27	for cables
	$\varnothing 3 \ldots \varnothing 7 \mathrm{~mm}$

With M12 metal connector | K50 | 5 poles, bottom |
| :--- | :--- |

Code structure
Attention! The feasibility of a code number does not mean the effective availability of a product. Please contact our sales office.

Contact type

silver contacts (standard)
silver contacts with $1 \mu \mathrm{~m}$ gold coating (not for contact block 3)

Threaded conduit entry
M2 M20x1.5 (standard)
PG11

Rollers

standard roller
stainless steel, $\varnothing 20 \mathrm{~mm}$
(for actuators $02,05,31,35,51,52,56,57$)
225 technopolymer, Ø 35 mm
(for actuators 31, 35, 51, 52,56,57)
R5 rubber, $\varnothing 40 \mathrm{~mm}$
(for actuators 31, 35, 51, 52, 56, 57)
R26 rubber, $\varnothing 50 \mathrm{~mm}$
(for actuators 31, 35, 51, 52, 56, 57)
R27 rubber, protruding, $\varnothing 50 \mathrm{~mm}$
(for actuators 35 e 36)

Pre-installed cable glands
without cable gland (standard)
K23 cable gland for cables Ø 6...Ø 12 mm
K27 cable gland for cables $\varnothing 3 \ldots \varnothing 7$ mm
K50 M12 metal connector, 5 poles
Please contact our technical service for the complete list of possible combinations.

Main features

- Metal housing, one conduit entry
- Protection degree IP67
- 3 contact blocks available
- 26 actuators available
- Versions with M12 connector
- Versions with gold-plated silver contacts

Technical data

Housing

Metal housing, baked powder coating
One threaded conduit entry:
Protection degree:
M20x1.5 (standard)
IP67 according to EN 60529
with cable gland having equal
or higher protection degree

General data

Ambient temperature:
Max. actuation frequency:
Mechanical endurance:
Mounting position:
Safety parameters:
$B_{10 d}$:
Mechanical interlock, not coded:
Tightening torques for installation:
(1) One operation cycle means two movements, one to close and one to open contacts, as defined in EN 60947-5-1.

Cable cross section (flexible copper strands)
Contact blocks 33, 34:
Contact block 3:

In conformity with standards:

IEC 60947-5-1, EN 60947-5-1, EN 60947-1, IEC 60204-1, EN 60204-1, EN ISO 14119, EN ISO 12100, IEC 60529, EN 60529, UL 508, CSA 22.2 No. 14.

Approvals:

IEC 60947-5-1, UL 508, CSA 22.2 No.14, GB14048.5-2001.

In conformity with the requirements of:

Low Voltage Directive 2006/95/EC, Machinery Directive 2006/42/EC and
EMC Directive 2004/108/EC.
Positive contact opening in conformity with standards:
IEC 60947-5-1, EN 60947-5-1.

IMQ approval:	
EG605	
UL approval:	
C131787	
ECC approval:	
EAC approval:	RU C-IT ДM94.B.01024

Installation for safety applications:
Use only switches marked with the symbol Θ aside the product code. Always connect the safety circuit to the NC contacts (normally closed contacts: 11-12, 21-22 or 31-32) as stated in standard EN 60947-5-1, encl. K, par. 2. Actuate the switch at least up to the positive opening travel shown in the travel diagrams on page 238. Operate the switch at least with the positive opening force, indicated between brackets below each article, aside the minimum force value.
§ If not expressly indicated in this chapter, for correct installation and utilization of all articles see chapter utilization requirements from page 235 to page 246.

Electrical data			Utilization category			
	Thermal current (lth): Rated insulation voltage (Ui): Rated impulse withstand voltage $\left(\mathrm{U}_{\mathrm{imp}}\right)$: Conditional short circuit current: Protection against short circuits: Pollution degree:	$\begin{aligned} & 10 \mathrm{~A} \\ & 500 \mathrm{Vac} 600 \mathrm{Vdc} \\ & 400 \text { Vac } 500 \mathrm{Vdc} \text { (contact blocks 33, 34) } \\ & 6 \mathrm{kV} \\ & 4 \mathrm{kV} \text { (contact blocks 33, 34) } \\ & 1000 \mathrm{~A} \text { according to EN 60947-5-1 } \\ & \text { type aM fuse } 10 \mathrm{~A} 500 \mathrm{~V} \\ & 3 \end{aligned}$	Alternating current: AC15 ($50 \div 60 \mathrm{~Hz}$)			
			Ue (V)	250	400	500
			le (A)	6	4	1
			Direct	ent:		
			Ue (V)	24	125	250
			le (A)	6	1.1	0.4
	Thermal current (lth): Rated insulation voltage (Ui): Protection against short circuits: Pollution degree:	```4A 250 Vac 300 Vdc type gG fuse 4 A 500 V 3```	Alternating current: AC15 ($50 \div 60 \mathrm{~Hz}$)			
			Ue (V)	24	120	250
			le (A)	4	4	4
			Direct	nt: D		
			Ue (V)	24	125	250
			le (A)	4	1.1	0.4

Characteristics approved by IMO

Rated insulation voltage (Ui):
500 Vac
400 Vac (for contact blocks 33, 34)
Conventional free air thermal current (lth): 10 A
Protection against short circuits:
type aM fuse 10 A 500 V
Rated impulse withstand voltage (U_{in}
6 kV
4 kV (for contact blocks 33, 34
Protection degree of the housing: IP67
MV terminals (screw terminals)
Pollution degree 3
Utilization category: AC15
Operating voltage (Ue): $400 \mathrm{Vac}(50 \mathrm{~Hz})$
Operating current (le): 3 A
Forms of the contact element: $\mathrm{Zb}, \mathrm{Y}+\mathrm{Y}$
Positive opening of contacts on contact blocks 33, 34
In conformity with standards: EN 60947-1, EN 60947-5-1+ A1:2009, fundamental requirements of the Low Voltage Directive 2006/95/EC.
Please contact our technical service for the list of approved products.

Characteristics approved by UL

Utilization categories Q300 (69 VA, 125 ... 250 Vdc)
A600 ($720 \mathrm{VA}, 120 \ldots 600 \mathrm{Vac}$)
Data of housing type $1,4 \mathrm{X}$ "indoor use only", 12, 13
For all contact blocks except 2 and 3 use 60 or $75^{\circ} \mathrm{C}$ copper (Cu) conductor rigid or flexible, wire size AWG 12/14. Terminal tightening torque of 7.1 lb in (0.8 Nm).

For contact blocks 2 and 3 use 60 or $75^{\circ} \mathrm{C}$ copper (Cu) conductor, rigid or flexible, wire size AWG 14. Terminal tightening torque of 12 lb in (1.4 Nm).
n conformity with standard: UL 508, CSA 22.2 No. 14

Please contact our technical service for the list of approved products.

Connection diagram for M12 connectors

Contact block 3 1NC-1NO	Contact block 33 $1 \mathrm{NC}+1 \mathrm{NO}$	$\begin{gathered} \text { Contact block } 34 \\ 2 N C \end{gathered}$
M12 connector, 5 poles	M12 connector, 5 poles	M12 connector, 5 poles
Contacts Pin no.	Contacts Pin no.	Contacts Pin no.
NC 1-2	NC 1-2	NC 1-2
NO 3-4	NO 3-4	NC 3-4
ground 5	ground 5	ground 5

		With external rubber gasket		With external rubber gasket
Contact blocks				
3 R	FC 308-M2 1NO-1NC	FC 310-M2 1NO-1NC	FC 311-M2 1NO-1NC	FC 315-M2 1NO-1NC
33 L	FC 3308-M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FC 3310-M2 Θ 1NO+1NC	FC 3311-M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FC 3315-M2 Θ 1NO+1NC
34 L	FC 3408-M2 Θ 2NC	FC 3410-M2 Θ 2NC	FC 3411-M2 Θ 2NC	FC 3415-M2 Θ 2NC
Max. speed	page 237 - type 4	page 237 - type 4	page 237 - type 4	page 237 - type 2
Min. force	$6 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$7 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$6 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$7 \mathrm{~N}(25 \mathrm{~N} \Theta)$
Travel diagrams	page 238-group 1	page 238-group 1	page 238-group 1	page 238 - group 1

(

	Square rod, $3 \times 3 \mathrm{~mm}$		Other rollers available. See on page 56	Fiber glass rod
3 R	FC 333-M2 1NO-1NC	FC 334-M2 1NO-1NC	FC 335-M2 1NO-1NC	FC 336-M2 1NO-1NC
33 L	FC 3333-M2 1NO+1NC	FC 3334-M2 1NO+1NC	FC 3335-M2 $\Theta{ }^{\text {(1) }} 1 \mathrm{NO}+1 \mathrm{NC}$	FC 3336-M2 1NO+1NC
34 L	FC 3433-M2 2NC	FC 3434-M2 2NC	FC 3435-M2 $\Theta{ }^{(1)} 2 \mathrm{NC}$	FC 3436-M2 2NC
Max. speed	$1.5 \mathrm{~m} / \mathrm{s}$	$1 \mathrm{~m} / \mathrm{s}$	page 237 - type 1	$1.5 \mathrm{~m} / \mathrm{s}$
Min. force	0.09 Nm	0.09 Nm	$0.09 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	0.09 Nm
Travel diagrams	page 238 - group 4			

	Other rollers available. See on page 56	Other rollers available. See on page 56	Porcelain roller	Other rollers available. See on page 56
ntac				
3 R	FC 351-M2 1NO-1NC	FC 352-M2 1NO-1NC	FC 353-E11M2 1NO-1NC	FC 356-M2 1NO-1NC
33 L	FC 3351-M2 Θ 1NO+1NC	FC 3352-M2 Θ 1NO+1NC	FC 3353-E11M2V9 Θ 1NO+1NC	FC 3356-M2 Θ 1NO+1NC
34 L	FC 3451-M2 Θ 2NC	FC 3452-M2 Θ 2NC	FC 3453-E11M2V9 Θ 2NC	FC 3456-M2 Θ 2NC
Max. speed	page 237 - type 1	page 237 - type 1	$0.5 \mathrm{~m} / \mathrm{s}$	page 237 - type 1
Min. force	$0.05 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.05 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.02 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.09 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$
Travel diagrams	page 238 - group 4	page 238 - group 4	page 238 - group 5	page 238 - group 4

${ }^{(1)}$ Positive opening only with actuator set to max. See page 55 .

Contact type:	Other rollers available. See on page 56	Rope switch for signalling
$\begin{aligned} & \mid=\text { snap action } \\ & \mathbf{L}=\text { slow action } \end{aligned}$		
3 R	FC 357-M2 1NO-1NC	FC 376-M2 1NO-1NC
33 L	FC 3357-M2 Θ 1NO+1NC	FC 3376-M2 1NO+1NC
34 L	FC 3457-M2 Θ 2NC	FC 3476-M2 2NC
Max. speed	page 237 - type 1	$0.5 \mathrm{~m} / \mathrm{s}$
Min. force	$0.09 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	initial 20 N - final 40 N
Travel diagrams	page 238 - group 4	page 238 - group 6

All measures in the drawings are in mm
Position switches with revolving lever without actuator

	Regular head	Compact head
Contact blocks		
3 R	FC 338-M2 1NO-1NC	FC 358-M2 1NO-1NC
33 L	FC 3338-M2 Θ 1NO+1NC	FC 3358-M2 Θ 1NO+1NC
34 L	FC 3438-M2 Θ 2NC	FC 3458-M2 Θ 2NC
Min. force	$0.09 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.05 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$
Travel diagrams	page 238 - group 4	page 238 - group 4

All measures in the drawings are in mm
Loose actuators

IMPORTANT

For safety applications: join only switches and actuators marked with symbol Θ aside the product code.
For more information about safety applications see details on page 235.

IMPORTANT: These loose actuators can be used with items of series FD, FP, FL, FC only.

Technopolymer roller Ø 20 mm	Adjustable round rod $\varnothing 3 \times 125 \mathrm{~mm}$	Adjustable square rod $3 \times 3 \times 125 \mathrm{~mm}$	Flexible rod with pointed end	Adjustable actuator with technopolymer roller	Adjustable fiber glass rod
VF L31 Θ	VF L32 ${ }^{(3)}$	VF L33 ${ }^{(3)}$	VF L34	VF L35 Θ (1) (3)	VF L36 ${ }^{(3)}$
Technopolymer roller $\varnothing 20$ mm	Technopolymer roller Ø 20 mm	Porcelain roller	Adjustable safety actuator with technopolymer roller	Technopolymer roller Ø 20 mm	
VF L51 Θ	VF L52 Θ	VF L53 $\Theta{ }^{(2)}$	VF L56 $\Theta{ }^{(3)}$	VF L57 Θ	

Special loose actuators
IMPORTANT: These loose actuators can be used with items of series FD, FP, FL, FC only.
Stainless steel rollers, $\varnothing 20$ mm

VF L31-R24 Θ	VF L35-R24 $\Theta^{(1)}{ }^{(3)}$	VF L51-R24 Θ	VF L52-R24 Θ	VF L56-R24 $\Theta{ }^{\text {(3) }}$	VF L57-R24 Θ

Technopolymer rollers, $\varnothing 35 \mathrm{~mm}$

Rubber rollers, $\varnothing 40 \mathrm{~mm}$

VF L31-R5 Θ (4)	VF L35-R5 $\underbrace{(1)}{ }^{(3)}$	VF L51-R5 Θ (4)	VF L52-R5 Θ	VF L56-R5 $\underbrace{(3)}$	VF L57-R5 $\Theta{ }^{(4)}$

Rubber rollers, $\varnothing 50 \mathrm{~mm}$

VF L31-R26 $\Theta{ }^{(4)}$	VF L35-R26 $\underbrace{(1)}{ }^{(3)}$	VF L51-R26 Θ (4)	VF L52-R26 ${ }^{(4)}$	VF L56-R26 ${ }^{(3)}$	VF L57-R26 Θ (4)

Protruding rubber rollers, $\varnothing 50 \mathrm{~mm}$
VF L35-R27 \rightarrow (1)(3)

[^3]
Description

Pizzato Elettrica position switches are daily installed in every type of industrial machinery all over the world for applications in the sector of wood, metal, plastic, automotive, packaging, lifting, medicinal, naval, etc.
In order to be used in a such wide variety of sectors and countries, Pizzato Elettrica position switches are made to be assembled in a lot of configurations thanks to the various body shapes, dozens of contact blocks, hundreds of actuators and materials, forces, assembling versions.
The product range that Pizzato Elettrica can offer in the field of position switches is one of the widest in the world. Moreover, the use of high quality materials, high reliability technologies as twin bridge contact blocks and the protection degree IP67, make this range of position switches one of the most technologically evolved.

Protection degree IP67

These devices are designed to be used in the toughest environmental conditions and they pass the IP67 immersion test acc. to
IEC 60529. They can therefore be used in all environments where the maximum protection of the housing is required.

Adjustable levers

For switches with swivelling lever the lever can be adjusted in 10° steps over the entire 360° range. The positive movement transmission is always guaranteed thanks to the particular geometrical coupling
 between the lever and the revolving shaft as prescribed for safety applications by the German standard BG-GS-ET-15.

Orientable heads

In all switches, it is possible to rotate the head in 90° steps.

Extended temperature range

$-40^{\circ} \mathrm{C}$
This range of switches is also available in a special version with an ambient operating temperature range of $-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$.
They can be used for applications in cold stores, sterilisers and other devices with low temperature environments. Special materials that have been used to realize these versions, maintain unchanged their features also in these conditions, widening the installation possibilities.

Overturning levers

For switches with swivelling lever the lever can be fastened straight or reversed, maintaining the positive coupling.
This makes it possible to have two different work plans of the lever.

Adjustable safety lever

The code 56 adjustable lever (and variants) has a notching that prevents the sliding also in case the retaining screw becomes loose.
The particular positive locking makes it suitable for safety applications.

Independent contacts

The contact block 16 has two NC contacts, both with positive opening activated independently according to the operating direction of the lever.

Gold-plated contacts

The contact blocks of these devices can be supplied gold-plated upon request. It is ideal for all applications with low voltages or currents and it ensures greater contact reliability. The high-thickness coating > 1 micron ensures the mechanical endurance of the coating over time.

Fixing plates

The technopolymer switches of the FX series come with two robust fixing plates. This solution makes it possible to avoid the underhead washer and ensures that the fixing of the switch is more stable over time.

Increased or reduced actuating force

For actuators with swivelling levers, versions with increased or reduced actuating force are available on request. This feature allows selection of a switch perfectly tailored for the application. For further information contact the Technical Department.

Selection diagram

CONDUIT ENTRY

Code structure

Attention! The feasibility of a code number does not mean the effective availability of a product. Please contact our sales office. article
FR 502-W3XGM2 70 R 23 T 6

Reset	
	without reset (standard)
W3	simultaneous reset
W4	simultaneous reset, increased force

External metallic parts
zinc-plated steel (standard)
X stainless steel

Contact type
silver contacts (standard) silver contacts with
G $1 \mu \mathrm{~m}$ gold coating (not for contact block 2)

Ambient temperature
$-25^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$ (standard)
T6 $-40^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$

Pre-installed cable glands or connectors without cable gland or connector (standard)
K23 cable gland for cables $\varnothing 6 \ldots \varnothing 12$ mm
K70 M12 plastic connector, 4 poles
Please contact our technical service for the complete list of possible combinations

Threaded conduit entry		Rollers	
M2	M20x1.5 (standard)		standard roller
M1	M16x1.5	R28	stainless steel, Ø 12 mm (for actuators A4, 15)
	PG 13.5		
A	PG 11	R23	stainless steel, Ø 14 mm (for actuators A2, 02, A5, 05, 30, $31,51,52,54,55,56,57)$
M3	1/2 NPT		
		R24	stainless steel, Ø 20 mm (for actuators 30, 31, 51, 52, 54, $55,56,57)$
ntact type		R25	technopolymer, Ø 35 mm
silver contacts (standard)			$55,56,57)$ rubber, $\varnothing 40 \mathrm{~mm}$
silver contacts with $1 \mu \mathrm{~m}$ gold coating (not for contact block 2)		R5	(for actuators $30,31,51,52,54$, $55,56,57)$
		R26	rubber, Ø 50 mm (for actuators $51,52,54,55,56,57$)
		R27	rubber, protruding, $\varnothing 50 \mathrm{~mm}$ (for actuators 55,56)

Main features

- Technopolymer housing, one conduit entry
- Protection degree IP67
- 17 contact blocks available
- 48 actuators available
- Versions with stainless steel external parts
- Versions with M12 connector
- Versions with gold-plated silver contacts

Technical data

Housing

Housing made of fiber glass reinforced technopolymer, self-extinguishing, shock-proof and with double insulation:
One threaded conduit entry:
Protection degree:
M20x1.5 (standard)
IP67 according to EN 60529 with cable gland having equal or higher protection degree

General data

Ambient temperature: $-25^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$
Max. actuation frequency:
3600 operating cycles ${ }^{1} /$ hour
Mechanical endurance:
20 million operating cycles ${ }^{1}$
Mounting position: any
Safety parameters:
$\mathrm{B}_{10 \mathrm{~d}}$:
nterlock, not coded:
,000,00 for NC contacts
type 1 according to EN ISO 14119
Tightening torques for installation: see pages 235-246
(1) One operation cycle means two movements, one to close and one to open contacts, as defined in EN 60947-5-1.

Cable cross section (flexible copper strands)
Contact blocks 20, 21, 22, 33, 34
Contact block 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 18 :
Contact block 2:

\min.	$1 \times 0.34 \mathrm{~mm}^{2}$	$(1 \times$ AWG 22)
\max.	$2 \times 1.5 \mathrm{~mm}^{2}$	$(2 \times$ AWG 16)
\min.	$1 \times 0.5 \mathrm{~mm}^{2}$	$(1 \times$ AWG 20)
\max.	$2 \times 2.5 \mathrm{~mm}^{2}$	$(2 \times$ AWG 14)
\min.	$1 \times 0.5 \mathrm{~mm}^{2}$	$(1 \times$ AWG 20)
\max.	$2 \times 1.5 \mathrm{~mm}^{2}$	$(2 \times$ AWG 16)

In conformity with standards:

IEC 60947-5-1, EN 60947-5-1, EN 60947-1, EN 50047, IEC 60204-1, EN 60204-1,
EN ISO 14119, EN ISO 12100, IEC 60529, EN 60529, UL 508, CSA 22.2 No. 14

Approvals:

IEC 60947-5-1, UL 508, CSA 22.2 No.14, GB14048.5-2001.

Markings and quality marks:

IMO approval:	
EG610	
UL approval:	
C131787	
ECC approval:	
EAC approval:	

In conformity with the requirements of:

Low Voltage Directive 2006/95/EC, Machinery Directive 2006/42/EC and EMC Directive 2004/108/EC.
Positive contact opening in conformity with standards:
IEC 60947-5-1, EN 60947-5-1.

Installation for safety applications:
Use only switches marked with the symbol Θ aside the product code. Always connect the safety circuit to the NC contacts (normally closed contacts: 11-12, 21-22 or 31-32) as stated in standard EN 60947-5-1, encl. K, par. 2. Actuate the switch at least up to the positive opening travel shown in the travel diagrams on page 240. Operate the switch at least with the positive opening force, indicated between brackets below each article, aside the minimum force value.
§ If not expressly indicated in this chapter, for correct installation and utilization of all articles see chapter utilization requirements from page 235 to page 246.

Electrical data		Utilization category			
Thermal current (lth): Rated insulation voltage (Ui):	10 A 500 Vac 600 Vdc 400 Vac 500 Vdc (contact blocks 2, 11, 12, 20, 21, 22, 33, 34) 6 kV 4 kV (contact blocks 20, 21, 22, 33, 34) 1000 A according to EN 60947-5-1 type aM fuse 10 A 500 V 3	Alternating current: AC15 (50 $\div 60 \mathrm{~Hz}$)			
Rated impulse withstand voltage ($U_{\text {imp }}$):		Ue (V)	250	400	500
		le (A)	6	4	1
		Direct current: DC13			
3 ¢ Conditional short circuit current:		$\mathrm{Ue}(\mathrm{V})$	24	125	250
Protection against short circuits: Pollution degree:		le (A)	6	1.1	0.4
Thermal current (lth): Rated insulation voltage (Ui): Protection against short circuits: Pollution degree:	```4A 250 Vac 300 Vdc type gG fuse 4 A 500 V 3```	Alternating current: AC15 ($50 \div 60 \mathrm{~Hz}$)			
		Ue (V)	24	120	250
		le (A)	4	4	4
		Direct c	ent: D		
		$\mathrm{Ue}(\mathrm{V})$	24	125	250
		le (A)	4	1.1	0.4
	```2 A 30 Vac 36 Vdc type gG fuse 2 A 500 V 3```	Alternating current: AC15 $(50 \div 60 \mathrm{~Hz})$			
		Ue (V)	24		
		le (A)	2		
		Direct cu	ent: D		
		Ue (V)	24		
		le (A)	2		

## Characteristics approved by IMO

Rated insulation voltage (Ui): 500 Vac
400 Vac (for contact blocks 2, 11, 12, 20, 21, 22, 33, 34)
Conventional free air thermal current (lth): 10 A
Protection against short circuits: type aM fuse 10 A 500 V
Rated impulse withstand voltage ( $\mathrm{U}_{\text {imp }}$ ): 6 kV
4 kV (for contact blocks 20, 21, 22, 33, 34)
Protection degree of the housing: IP67
MV terminals (screw terminals)
Pollution degree 3
Utilization category: AC15
Operating voltage (Ue): $400 \mathrm{Vac}(50 \mathrm{~Hz})$
Operating current (le): 3 A
Forms of the contact element: $\mathrm{Za}, \mathrm{Zb}, \mathrm{Za}+Z a, Y+Y, X+X, Y+Y+X, Y+Y+Y, Y+X+X$
Positive opening of contacts on contact blocks $5,6,7,9,11,13,14,16,18,20$,
$21,22,33,34$
In conformity with standards: EN 60947-1, EN 60947-5-1+ A1:2009, fundamental
requirements of the Low Voltage Directive 2006/95/EC.
Please contact our technical service for the list of approved products.

## Characteristics approved by UL

Utilization categories Q300 (69 VA, 125 ... 250 Vdc)
A600 (720 VA, $120 \ldots 600 \mathrm{Vac}$ )
Data of housing type $1,4 \mathrm{X}$ "indoor use only", 12,13
For all contact blocks except 2 and 3 use 60 or $75^{\circ} \mathrm{C}$ copper ( Cu ) conductor, rigid or flexible, wire size AWG $12 / 14$. Terminal tightening torque of 7.1 lb in ( 0.8 Nm ).
For contact blocks 2 and 3 use 60 or $75^{\circ} \mathrm{C}$ copper ( Cu ) conductor, rigid or flexible, wire size AWG 14. Terminal tightening torque of 12 lb in ( 1.4 Nm ).

In conformity with standard: UL 508, CSA 22.2 No. 14

Please contact our technical service for the list of approved products.

## Connection diagram for M12 connectors

$\begin{gathered} \text { Contact block } 2 \\ \text { 1NO-1NC+1NO-1NC } \end{gathered}$	$\begin{gathered} \text { Contact block } 5 \\ 1 \mathrm{NO}+1 \mathrm{NC} \end{gathered}$	$\begin{gathered} \text { Contact block } 6 \\ 1 N O+1 N C \end{gathered}$	Contact block 7 $1 \mathrm{NO}+1 \mathrm{NC}$	Contact block 9 2NC	Contact block 10 2NO	Contact block 11 2NC	Contact block 12 2 NO	Contact block 13 2NC
M12 connector, 8 poles	M12 connector, 4 poles							
$\begin{array}{cc} \text { Contacts } & \text { Pin no. } \\ \text { NO } & 3-4 \end{array}$	$\begin{array}{cc} \text { Contacts } & \text { Pin no. } \\ \text { NC } & 1-2 \end{array}$	$\begin{array}{cc} \hline \text { Contacts } & \text { Pin no. } \\ \text { NC } & 1-2 \end{array}$	$\begin{array}{cc} \hline \text { Contacts } & \text { Pin no. } \\ \text { NC } & 1-2 \end{array}$	$\begin{array}{cc} \hline \text { Contacts } & \text { Pin no. } \\ \text { NC } & 1-2 \end{array}$	$\begin{array}{cc} \hline \text { Contacts } & \text { Pin no. } \\ \text { NO } & 1-2 \end{array}$	$\begin{array}{cc} \hline \text { Contacts } & \text { Pin no. } \\ \text { NC } & 1-2 \end{array}$	$\begin{array}{cc} \hline \text { Contacts } & \text { Pin no. } \\ \text { NO } & 1-2 \end{array}$	$\begin{array}{\|cc} \hline \text { Contacts } & \text { Pin no. } \\ \text { NC }\left(1^{\circ}\right) & 1-2 \end{array}$
NC 5-6	NO 3-4	NO 3-4	NO 3-4	NC 3-4	NO 3-4	NC 3-4	NO 3-4	NC ( $2^{\circ}$ ) $\quad 3-4$
NC 7-8								
NO 1-2								


Contact block 14   2 NCContact block 15   2 NO



M12 connector, 4 poles

Contacts	Pin no.
+	1
-	3
NC	2
NO	4



Contact blocks		With stainless steel roller on request		
	With $\varnothing 12 \mathrm{~mm}$ stainless steel roller on request		With stainless steel roller on request	
5 R	FR 5A4-M2 $\Theta$ 1NO+1NC	FR 505-M2 $\Theta$ 1NO+1NC	FR 5A5-M2 $\Theta$ 1NO+1NC	FR 507-M2 $\Theta$ 1NO+1NC
6 L	FR 6A4-M2 $\Theta$ 1NO+1NC	FR 605-M2 $\Theta$ 1NO+1NC	FR 6A5-M2 $\Theta$ 1NO+1NC	FR 607-M2 $\Theta$ 1NO+1NC
7 L0	FR 7A4-M2 $\Theta$ 1NO+1NC	FR 705-M2 $\Theta$ 1NO+1NC	FR 7A5-M2 $\Theta$ 1NO+1NC	FR 707-M2 $\Theta$ 1NO+1NC
$9 \square$	FR 9A4-M2 $\Theta$ 2NC	FR 905-M2 $\Theta$ 2NC	FR 9A5-M2 $\Theta$ 2NC	FR 907-M2 $\Theta$ 2NC
10 L	FR 10A4-M2 2NO	FR 1005-M2 2NO	FR 10A5-M2 2NO	FR 1007-M2 2NO
11 R	FR 11A4-M2 $\Theta$ 2NC	FR 1105-M2 $\Theta$ 2NC	FR 11A5-M2 $\Theta$ 2NC	FR 1107-M2 $\Theta$ 2NC
12 R	FR 12A4-M2 2NO	FR 1205-M2 2NO	FR 12A5-M2 2NO	FR 1207-M2 2NO
13 LV	FR 13A4-M2 $\Theta$ 2NC	FR 1305-M2 $\Theta$ 2NC	FR 13A5-M2 $\Theta$ 2NC	FR 1307-M2 $\Theta$ 2NC
14 LS	FR 14A4-M2 $\Theta$ 2NC	FR 1405-M2 $\Theta$ 2NC	FR 14A5-M2 $\Theta$ 2NC	FR 1407-M2 $\Theta$ 2NC
15 LS	FR 15A4-M2 2NO	FR 1505-M2 2NO	FR 15A5-M2 2NO	FR 1507-M2 2NO
18 LA	FR 18A4-M2 $\Theta$ 1NO+1NC	FR 1805-M2 $\Theta$ 1NO+1NC	FR 18A5-M2 $\Theta$ 1NO+1NC	FR 1807-M2 $\Theta$ 1NO+1NC
20 L	FR 20A4-M2 $\Theta 1$ NO+2NC	FR 2005-M2 $\Theta$ 1NO+2NC	FR 20A5-M2 $\Theta$ 1NO+2NC	FR 2007-M2 $\Theta$ 1NO+2NC
21 L	FR 21A4-M2 $\Theta$ 3NC	FR 2105-M2 $\Theta$ 3NC	FR 21A5-M2 $\Theta 3 \mathrm{NC}$	FR 2107-M2 $\Theta 3 \mathrm{NC}$
22 L	FR 22A4-M2 $\Theta 2 \mathrm{NO}+1 \mathrm{NC}$	FR 2205-M2 $\Theta$ 2NO+1NC	FR 22A5-M2 $\Theta$ 2NO+1NC	FR 2207-M2 $\Theta$ 2NO+1NC
2 R		FR 205-M2 2x(1NO-1NC)	FR 2A5-M2 2x(1NO-1NC)	FR 207-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC}$ )
E1 亩	FR E1A4-M2 1NO-1NC	FR E105-M2 1NO-1NC	FR E1A5-M2 1NO-1NC	FR E107-M2 1NO-1NC
Max. speed	page 239 - type 5	page 239 - type 3	page 239 - type 3	page 239 - type 3
Min. force	$6 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$6 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$4.3 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$4 \mathrm{~N}(25 \mathrm{~N} \Theta)$
Travel diagrams	page 240 - group 1	page 240 - group 2	page 240 - group 2	page 240 - group 3

All measures in the drawings are in mm


Contact blocks				Roller, $\varnothing 11 \mathrm{~mm}$, technopolymer	Roller, $\varnothing 12 \mathrm{~mm}$, stainless steel	
5	R		FR 513-M2 $\Theta$ 1NO+1NC	FR 514-M2 $\Theta$ 1NO+1NC	FR 515-M2 $\Theta$ 1NO+1NC	FR 515-M2R28 $\Theta$ 1NO+1NC
6	L	FR 613-M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FR 614-M2 $\Theta$ 1NO+1NC	FR 615-M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FR 615-M2R28 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	
7	LO	FR 713-M2 $\Theta$ 1NO+1NC	FR 714-M2 $\Theta$ 1NO+1NC	FR 715-M2 $\Theta$ 1NO+1NC	FR 715-M2R28 $\Theta$ 1NO+1NC	
9	L	FR 913-M2 $\Theta$ 2NC	FR 914-M2 $\Theta$ 2NC	FR 915-M2 $\Theta$ 2NC	FR 915-M2R28 $\Theta$ 2NC	
10	L	FR 1013-M2 2NO	FR 1014-M2 2NO	FR 1015-M2 2NO	FR 1015-M2R28 2NO	
11	R	FR 1113-M2 $\Theta$ 2NC	FR 1114-M2 $\Theta$ 2NC	FR 1115-M2 $\Theta$ 2NC	FR 1115-M2R28 $\Theta$ 2NC	
12	R	FR 1213-M2 2NO	FR 1214-M2 2NO	FR 1215-M2 2NO	FR 1215-M2R28 2NO	
13	LV	FR 1313-M2 $\Theta$ 2NC	FR 1314-M2 $\Theta$ 2NC	FR 1315-M2 $\Theta$ 2NC	FR 1315-M2R28 $\Theta$ 2NC	
14	LS	FR 1413-M2 $\Theta$ 2NC	FR 1414-M2 $\Theta 2 \mathrm{NC}$	FR 1415-M2 $\Theta$ 2NC	FR 1415-M2R28 $\Theta 2 \mathrm{NC}$	
15	LS	FR 1513-M2 2NO	FR 1514-M2 2NO	FR 1515-M2 2NO	FR 1515-M2R28 2NO	
18	LA	FR 1813-M2 $\Theta$ 1NO+1NC	FR 1814-M2 $\Theta$ 1NO+1NC	FR 1815-M2 $\Theta$ 1NO+1NC	FR 1815-M2R28 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	
20	$\square$	FR 2013-M2 $\Theta$ 1NO+2NC	FR 2014-M2 $\Theta$ 1NO+2NC	FR 2015-M2 $\Theta$ 1NO+2NC	FR 2015-M2R28 $\Theta 1 \mathrm{NO}+2 \mathrm{NC}$	
21	L	FR 2113-M2 $\Theta 3 N \mathrm{C}$	FR 2114-M2 $\Theta 3 \mathrm{NC}$	FR 2115-M2 $\Theta 3 \mathrm{NC}$	FR 2115-M2R28 $\Theta 3 \mathrm{NC}$	
22	L	FR 2213-M2 $\Theta$ 2NO+1NC	FR 2214-M2 $\Theta$ 2NO+1NC	FR 2215-M2 $\Theta$ 2NO+1NC	FR 2215-M2R28 $\Theta 2 \mathrm{NO}+1 \mathrm{NC}$	
2	R	FR 213-M2 2x(1NO-1NC)	FR 214-M2 2x(1NO-1NC)	FR 215-M2 2x(1NO-1NC)	FR 215-M2R28 $2 \times(1 \mathrm{NO}-1 \mathrm{NC})$	
E1	$\pi$	FR E113-M2 1NO-1NC	FR E114-M2 1NO-1NC	FR E115-M2 1NO-1NC	FR E115-M2R28 1NO-1NC	
Max. speed		page 239 -type 2	page 239 - type 4	page 239 - type 2	page 239 - type 2	
Min. force		$8 \mathrm{~N}(25 \mathrm{~N} \Theta)$				
Travel diagrams		page 240 - group 1				

All measures in the drawings are in mm
Items with code on green background are stock items
Accessories See page 225

		Fixed only by threaded head in vertical position		With external rubber gasket
Contact type:   $\mathbf{R}$ = snap action   L $=$ slow action   LO = slow action overlapped   LS = slow action shifted   LV = slow action shifted and spaced   $\mathbf{L I}$ = slow action independent   LA = slow action closer   有   electronic   PNP   Contact blocks				
$5 \quad \mathbf{R}$	FR 516-M2 $\Theta$ 1NO+1NC	FR 517-M2 $\Theta$ 1NO+1NC	FR 520-M2 1NO+1NC	FR 521-M2 1NO+1NC
6 L	FR 616-M2 $\Theta$ 1NO+1NC	FR 617-M2 $\Theta$ 1NO+1NC		
7 L0	FR 716-M2 $\Theta$ 1NO+1NC	FR 717-M2 $\Theta$ 1NO+1NC		
9 L	FR 916-M2 $\Theta$ 2NC	FR 917-M2 $\Theta$ 2NC		
10 L	FR 1016-M2 2NO	FR 1017-M2 2NO	FR 1020-M2 2NO	FR 1021-M2 2NO
11 R	FR 1116-M2 $\Theta$ 2NC	FR 1117-M2 $\Theta$ 2NC		
12 R	FR 1216-M2 2NO	FR 1217-M2 2NO	FR 1220-M2 2NO	FR 1221-M2 2NO
13 LV	FR 1316-M2 $\Theta$ 2NC	FR 1317-M2 $\Theta$ 2NC		
14 LS	FR 1416-M2 $\Theta$ 2NC	FR 1417-M2 $\Theta$ 2NC		
15 LS	FR 1516-M2 2NO	FR 1517-M2 2NO		
18 LA	FR 1816-M2 $\Theta$ 1NO+1NC	FR 1817-M2 $\Theta$ 1NO+1NC	FR 1820-M2 1NO+1NC	FR 1821-M2 1NO+1NC
20 L	FR 2016-M2 $\Theta$ 1NO+2NC	FR 2017-M2 $\Theta$ 1NO+2NC	FR 2020-M2 1NO+2NC	FR 2021-M2 1NO+2NC
21 L	FR 2116-M2 $\Theta 3 N C$	FR 2117-M2 $\Theta 3 \mathrm{NC}$	FR 2120-M2 3NC	FR 2121-M2 3NC
22 L	FR 2216-M2 $\Theta$ 2NO+1NC	FR 2217-M2 $\Theta$ 2NO+1NC	FR 2220-M2 $2 \mathrm{NO}+1 \mathrm{NC}$	FR 2221-M2 2NO+1NC
2 R	FR 216-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC}$ )	FR 217-M2 2x(1NO-1NC)	FR 220-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC})$	FR 221-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC}$ )
E1 冝	FR E116-M2 1NO-1NC	FR E117-M2 1NO-1NC	FR E120-M2 1NO-1NC	FR E121-M2 1NO-1NC
Max. speed	page 239 - type 2	page 239 - type 2	$1 \mathrm{~m} / \mathrm{s}$	$1 \mathrm{~m} / \mathrm{s}$
Min. force	$8 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$8 \mathrm{~N}(25 \mathrm{~N} \Theta)$	0.07 Nm	0.07 Nm
Travel diagrams	page 240 - group 1	page 240 - group 1	page 240 - group 4	page 240 - group 4



All measures in the drawings are in mm
Items with code on green background are stock items

		Found fod， 03 mm m Staniess		
5 ，	FR 534－M2 inotiN	FR 550－M2 inotinc	FR 551－M2 $\Theta$ © $\mathrm{NO}+$＋1NC	
$\square$	FR 634－M2 inotinc	FR $650-\mathrm{M} 2 \quad 1 \mathrm{NO}+\mathrm{HC}$	FR 651－M2 $\Theta$ ¢ ${ }^{\text {NO}}+1 \mathrm{NC}$	FR 652－M2 $\bigcirc^{(1 N+1 \text { NT }}$
$\square$	fr 934－M2 ${ }^{\text {2NC }}$	FR 950－M2 2 NC	FR 951－M2 $\Theta^{\text {2nc }}$	FR 952－M2 $\bigcirc^{\text {2NC }}$
10 T	FR 1034－M2 2N0	FR 1050－M2 2 2N0	FR 1051－M2 2NO	FR 1052－M2 ${ }^{\text {2NO }}$
11 ［	FR 1134－M2 2 NC	FR 1150－M2 ${ }^{\text {anc }}$	FR 1151－M2 $\oplus_{\text {e2NC }}$	FR 1152－M2 $\Theta^{\text {2NC }}$
12 ［	fr 1234－M2 2N0	FR 1250－M2 2 2NO	FR 1251－M2 2 2N0	FR 1252－M2 2 2NO
13 viv	FR 1334－M2 2 2NC	FR 1350－M2 2 2NC	FR 1351－M2 $\oplus_{\text {2 2NC }}$	FR 1352－M2 $\Theta_{\text {2NC }}$
	FR 1434－M2 2 NC	FR 1450－M2 2 NC	FR 1451－M2 $\Theta$ 2nc	FR 1452－M2 $\Theta^{2 N \mathrm{NC}}$
	FR 1534－M2 2 2N0	FR 1550－M2 2 2N0	FR 1551－M2 ${ }^{\text {2NO }}$	FR 1552－M2 ${ }^{\text {2N0 }}$
16 ■	FR 1634－M2 2 NC	FR 1650－M2 2 NC	FR 1651－M2 $\Theta$ 2nc	FR 1652－M2 $\Theta^{-2 \mathrm{NC}}$
18 La	FR 1834－M2 ${ }^{\text {NNo＋11 }}$	FR 1850－M2 ${ }^{\text {NOO＋1NC }}$	FR 1851－M2 $\Theta$ M ${ }^{\text {Not }}$＋1NC	FR 1852－M2 $\Theta^{10}$
20 T	FR 2034－M2 ${ }^{\text {a }}$－ P 2NC	FR 2050－M2 INO＋2NC	FR 2051－M2 $\Theta$ iNo＋2NC	FR 2052－M2 © ${ }^{\text {NNor2NC }}$
21 －	FR 2134－M2 ${ }^{\text {Prem }}$	${ }_{\text {FR 2 2150－M2 }}$	${ }_{\text {FR 2 } 2151-M 2 ~}^{1}$＠ 3 NC	FR 2152－M2 $\Theta$ OnC
22 －	FR 2234－M2 2NO＋11NC	FRR250－M2 2NO＋1N0	FR 2251－M2 $\Theta$ 2NO＋1NC	FR 225－M2 $\odot$ 2NO＋1NC
2 回	FR 234－M2 $2 \times 1{ }^{\text {2xino．10）}}$	FR 250－M2 ${ }^{\text {axineow }}$	FR 251－M2 ${ }^{\text {axilNo－1N0 }}$	FR 252－M2 $2 \times 1 \mathrm{NO}-\mathrm{NCO}$
E1 因	FRE134－M2 ${ }^{\text {NWO．NC }}$	FRE150－M2 ino． 1 NC	FRE15－M2 ino．nc	FRE152－M2 1 No－1nc
Max spoed	$1.5 \mathrm{~m} / \mathrm{s}$	$1.5 \mathrm{~m} / \mathrm{s}$	page 239 －type 1	page 239 －type
Min force	0.06 Nm	0.06 Nm	$0.06 \mathrm{Nm}(0.25 \mathrm{Nm}$ ¢）	0.06 Nm 10.25 Nm
Fvel digams	240 －group	20 －910	age 240 －group 5	page 240 －group 5


Contact blocks		Porcelain roller	Other rollers available．See on page 70	Other rollers available．See on page 70	Other rollers available．See on page 70	
5	R		FR 553－E0M2V9 $\Theta$ 1NO＋1NC	FR 554－M2 $\Theta$ 1NO＋1NC	FR 555－M2 $\quad{ }^{(1)} 1 \mathrm{NO}+1 \mathrm{NC}$	FR 556－M2 $\Theta$ 1NO＋1NC
6	L	FR 653－E0M2V9 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FR 654－M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FR 655－M2 $\quad$（1） $1 \mathrm{NO}+1 \mathrm{NC}$	FR 656－M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	
7	LO	FR 753－E0M2V9 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FR 754－M2 $\Theta 1$ NO＋1NC	FR 755－M2 $\Theta$（1） $1 \mathrm{NO}+1 \mathrm{NC}$	FR 756－M2 $\Theta 1$ NO＋1NC	
9	$\square$	FR 953－E0M2V9 $\Theta$ 2NC	FR 954－M2 $\Theta$ 2NC	FR 955－M2 $\underbrace{(1)} 2 \mathrm{NC}$	FR 956－M2 $\Theta 2 N C$	
10	$\square$	FR 1053－E0M2V9 2NO	FR 1054－M2 2NO	FR 1055－M2 2NO	FR 1056－M2 2NO	
11	R		FR 1154－M2 $\Theta$ 2NC	FR 1155－M2 $\Theta^{(1)} 2 \mathrm{NC}$	FR 1156－M2 $\Theta$ 2NC	
12	R	FR 1253－E0M2V9 2NO	FR 1254－M2 2NO	FR 1255－M2 2NO	FR 1256－M2 2NO	
13	LV	FR 1353－E0M2V9 $\Theta$ 2NC	FR 1354－M2 $\Theta$ 2NC	FR 1355－M2 $\Theta$（1） 2 NC	FR 1356－M2 $\Theta$ 2NC	
14	LS	FR 1453－E0M2V9 $\Theta$ 2NC	FR 1454－M2 $\Theta$ 2NC	FR 1455－M2 $\Theta^{(1)} 2 \mathrm{NC}$	FR 1456－M2 $\Theta$ 2NC	
15	LS	FR 1553－E0M2V9 2NO	FR 1554－M2 2NO	FR 1555－M2 2NO	FR 1556－M2 2NO	
16	LT		FR 1654－M2 $\Theta$ 2NC	FR 1655－M2 $\Theta^{(1)} 2 \mathrm{NC}$	FR 1656－M2 $\Theta$ 2NC	
18	LA	FR 1853－E0M2V9 $\Theta$ 1NO＋1NC	FR 1854－M2 $\Theta$ 1NO＋1NC	FR 1855－M2 $\Theta$（1） $1 \mathrm{NO}+1 \mathrm{NC}$	FR 1856－M2 $\Theta$ 1NO＋1NC	
20	$\square$	FR 2053－E0M2V9 $\Theta$ 1NO＋2NC	FR 2054－M2 $\Theta$ 1NO＋2NC	FR 2055－M2 $\Theta$（1） $1 \mathrm{NO}+2 \mathrm{NC}$	FR 2056－M2 $\Theta$ 1NO＋2NC	
21	L	FR 2153－E0M2V9 $\Theta 3 \mathrm{NC}$	FR 2154－M2 $\Theta 3 \mathrm{NC}$	FR 2155－M2 $\Theta^{(1)} 3 \mathrm{NC}$	FR 2156－M2 $\Theta 3 \mathrm{NC}$	
22	L	FR 2253－E0M2V9 $\Theta 2 \mathrm{NO}+1 \mathrm{NC}$	FR 2254－M2 $\Theta$ 2NO＋1NC	FR 2255－M2 $\Theta$（1） $2 \mathrm{NO}+1 \mathrm{NC}$	FR 2256－M2 $\Theta$ 2NO＋1NC	
2	R	FR 253－E0M2 2x（1NO－1NC）	FR 254－M2 2x（1NO－1NC）	FR 255－M2 2x（1NO－1NC）	FR 256－M2 2x（1NO－1NC）	
E1	大	FR E153－E0M2V9 1NO－1NC	FR E154－M2 1NO－1NC	FR E155－M2 1NO－1NC	FR E156－M2 1NO－1NC	
Max．speed		$0.5 \mathrm{~m} / \mathrm{s}$	page 239 －type 1	page 239 －type 1	page 239 －type 1	
Min．force		$0.03 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.06 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.06 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.06 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	
Travel diagrams		page 240 －group 6	page 240 －group 5	page 240 －group 5	page 240 －group 5	

${ }^{(1)}$ Positive opening only with actuator set to max．See page 69.
All measures in the drawings are in mm
Items with code on green background are stock items
Accessories See page 225
The 2D／3D files are available at www．pizzato．com


## Position switches FR series with reset



Pizzato Elettrica has developed a reset device code W3 to make perfectly simultaneous the actuator and the contact block tripping.
The device is a block inserted between the switch body and the head, and could be rotated independently from this last one. This new device has following advantages:

- The reset device can be integrated into almost all standard actuator heads
- Contact bllocks with snap action are no more necessary because the tripping movement is made by the reset device itself
- The reset device can be rotated independently from the head for maximum flexibility during installation
-Two driving forces: standard and increased for applications with vibrations
- Mechanical endurance: 1 million operating cycles.


All measures in the drawings are in mm


		Other rollers available. See on page 70	Other rollers available. See on page 70	Other rollers available. See on page 70
Contact blocks				
6 L	FR 652-W3M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FR 654-W3M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FR 656-W3M2 $\Theta 1$ (1)+1NC	FR 657-W3M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$
9 L	FR 952-W3M2 $\Theta 2 \mathrm{NC}$	FR 954-W3M2 $\Theta 2 N C$	FR 956-W3M2 $\Theta 2 \mathrm{NC}$	FR 957-W3M2 $\Theta 2 N C$
10 L	FR 1052-W3M2 2NO	FR 1054-W3M2 2NO	FR 1056-W3M2 2NO	FR 1057-W3M2 2NO
20 L	FR 2052-W3M2 $\Theta 1 \mathrm{NO}+2 \mathrm{NC}$	FR 2054-W3M2 $\Theta$ 1NO+2NC	FR 2056-W3M2 $\rightarrow$ 1NO+2NC	FR 2057-W3M2 $\Theta 1 \mathrm{NO}+2 \mathrm{NC}$
21 L	FR 2152-W3M2 $\Theta 3 N C$	FR 2154-W3M2 $\Theta 3 N C$	FR 2156-W3M2 $\Theta 3 N \mathrm{C}$	FR 2157-W3M2 $\Theta$ 3NC
22 L	FR 2252-W3M2 $\Theta 2 \mathrm{NO}+1 \mathrm{NC}$	FR 2254-W3M2 $\Theta 2 \mathrm{NO}+1 \mathrm{NC}$	FR 2256-W3M2 $\Theta 2 \mathrm{NO}+1 \mathrm{NC}$	FR 2257-W3M2 $\Theta 2 \mathrm{NO}+1 \mathrm{NC}$
2 R	FR 252-W3M2 2NO+2NC	FR 254-W3M2 2NO+2NC	FR 256-W3M2 2NO+2NC	FR 257-W3M2 2NO+2NC
Max. speed	page 239 - type 1			
Min. force	$0.07 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	0.07 Nm (0.25 Nm $\Theta$ )	0.07 Nm (0.25 Nm $\Theta$ )	$0.07 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$
Travel diagrams	page 241 - group 4			

## Increased actuating force



The switch can be delivered with increased actuating force (option W4). Ideal for applications with vibrations.

Actuators	Min. force
$01,14,15,16$	7 N
02,05	6 N
07	3.5 N
$30 \ldots 57$	0.08 Nm

Position switches with revolving lever without actuator

ntact type:			With manual reset knob
5 R		FR 538-M2 $\Theta$ 1NO+1NC	
6	L	FR 638-M2 $\Theta$ 1NO+1NC	FR 638-W3M2 $\Theta$ 1NO+1NC
7	LO	FR 738-M2 $\quad \Theta$ 1NO+1NC	
9	$\square$	FR 938-M2 $\Theta$ 2NC	FR 938-W3M2 $\Theta$ 2NC
10	L	FR 1038-M2 2NO	FR 1038-W3M2 2NO
11	R	FR 1138-M2 $\Theta$ 2NC	
12	R	FR 1238-M2 2NO	
13	LV	FR 1338-M2 $\Theta$ 2NC	
14	LS	FR 1438-M2 $\Theta$ 2NC	
15	LS	FR 1538-M2 2NO	
16	L	FR 1638-M2 $\Theta$ 2NC	
18	LA	FR 1838-M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	
20	L	FR 2038-M2 $\Theta 1 \mathrm{NO}+2 \mathrm{NC}$	FR 2038-W3M2 $\Theta$ 1NO+2NC
21	L	FR 2138-M2 $\Theta 3 N C$	FR 2138-W3M2 $\Theta 3 \mathrm{NC}$
22	L	FR 2238-M2 $\Theta$ 2NO+1NC	FR 2238-W3M2 $\Theta 2 \mathrm{NO}+1 \mathrm{NC}$
2	R	FR 238-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC)}$	FR 238-W3M2 2NO+2NC
E1	㳓	FR E138-M2 1NO-1NC	
Min. force		$0.06 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta$ )	0.07 Nm (0.25 Nm $\Theta$ )
	agrams	page 240 - group 5	page 241 - group 4

## IMPORTANT

For safety applications: join only switches and actuators marked with symbol $\Theta$ aside the product code.
For more information about safety applications see details on page 235.

All measures in the drawings are in mm

Loose actuators					All measures in the drawings are in mm	
IMPORTANT: These loose actuators can be used with items of series FR, FM, FX, FZ and FK only.						
Technopolymer roller $\varnothing 18$ mm	Technopolymer roller $\varnothing 18$ mm	Adjustable square rod, $3 \times 3 \times 125 \mathrm{~mm}$	Flexible rod with pointed end	Adjustable round rod $03 \times 125 \mathrm{~mm}$	Technopolymer roller $\varnothing 20$ mm	
VF LE30 $\Theta$	VF LE31 $\Theta$	VF LE33	VF LE34	VF LE50	LE5	
Technopolymer roller $\varnothing 20$ mm	Porcelain roller	Technopolymer roller $\varnothing 20$ mm	Adjustable actuator with technopolymer roller	Adjustable safety actuator with technopolymer roller	Technopolymer roller $\varnothing 20$ mm	Adjustable fiber glass rod
VF LE52 $\Theta$	VF LE53 $\Theta{ }^{\text {(2) }}$	VF LE54 $\Theta$	VF LE55 $\Theta{ }^{(1)}$	VF LE56 $\Theta$	VF LE57 $\Theta$	VF LE69
- ${ }^{(1)}$ Actuator VF LE55 can only be used in safety applications if adjusted to its max. length, as shown in figure beside. If you need an adjustable lever for safety applications, use the adjustable safety lever VF LE56.   - ${ }^{(2)}$ The position switch obtained by assembling switch FR $\bullet 38-M 2$ (e.g. FR 538-M2, FR 638-M2 ...) with actuator VF L53 will not present the same travel diagrams and actuating forces as switch FR •53-EOM2V9 (e.g. FR 553-E0M2V9, FR 653-E0M2V9...).   - ${ }^{(4)}$ The actuator cannot be rotated to the inside because it will mechanically interfere with the switch head.						
Items with code on green background are stock items			Accessories See page 225		$\rightarrow$ The 2D/3D files are available at www.pizzato.com	

Special loose actuators
IMPORTANT: These loose actuators can be used with items of series FR, FM, FX, FZ and FK only.
Stainless steel rollers, Ø 20 mm

VF LE31-R24 $\Theta$	VF LE51-R24 $\Theta$	VF LE52-R24 $\Theta$	VF LE54-R24 $\Theta$	VF LE55-R24 $\Theta{ }^{(1)}$	VF LE56-R24 $\Theta$	VF LE57-R24 $\Theta$

Technopolymer rollers, $\varnothing 35 \mathrm{~mm}$


Rubber rollers, $\varnothing 40$ mm


Rubber rollers, $\varnothing 50 \mathrm{~mm}$


## Protruding rubber rollers, $\varnothing 50 \mathrm{~mm}$



## Selection diagram


product options
accessory sold separately


Code structure
Attention! The feasibility of a code number does not mean the effective availability of a product. Please contact our sales office.
FM 502-


Reset	
Without reset (standard)	
W3	simultaneous reset
W4	simultaneous reset, increased force

## Contact type

silver contacts (standard)
G
silver contacts with $1 \mu \mathrm{~m}$ gold coating (not for contact block 2)
Ambient temperature
$-25^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$ (standard)
T6 $-40^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$

Pre-installed cable glands or connectors without cable gland or connector (standard)
K23 cable gland for cables Ø 6...Ø 12 mm
K50 M12 metal connector, 5 poles
Please contact our technical service for the complete list of possible combinations.

Threaded conduit entry		Rollers	
M2	M20x1.5 (standard)		standard roller
	PG 13.5	R28	stainless steel, Ø 12 mm (for actuators A4, 15)
		R23	stainless steel, Ø 14 mm   (for actuators A2, 02, A5, 05, 30,   $31,51,52,54,55,56,57)$
		R24	stainless steel, Ø 20 mm   (for actuators 30, 31, 51, 52, 54,   $55,56,57$ )
		R25	technopolymer, Ø 35 mm (for actuators $30,31,51,52,54$, $55,56,57)$
		R5	rubber, $\varnothing 40 \mathrm{~mm}$   (for actuators $30,31,51,52,54$, $55,56,57)$
		R26	rubber, Ø 50 mm (for actuators $51,52,54,55,56,57$ )
		R27	rubber, protruding, $\varnothing 50 \mathrm{~mm}$ (for actuators 55,56 )



## Main features

- Metal housing, one conduit entry
- Protection degree IP67
- 17 contact blocks available
- 43 actuators available
- Versions with M12 connector
- Versions with gold-plated silver contacts


## Markings and quality marks:

## 

IMO approval:	
EG609	
UL approval:	
C131787	
EAC approval:	
EApproval:	

## Technical data

## Housing

Metal housing, baked powder coating
One threaded conduit entry:
Protection degree:
M20x1.5 (standard)
IP67 according to EN 60529 with cable gland having equal or higher protection degree

## General data

Ambient temperature:
Max. actuation frequency:
Mechanical endurance:
Mounting position:
Safety parameters:
$\mathrm{B}_{10 \mathrm{~d}}$ :
Mechanical interlock, not coded:
$-25^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$
3600 operating cycles ${ }^{1} /$ hour
20 million operating cycles ${ }^{1}$ any

40,000,00 for NC contacts type 1 according to EN ISO 14119 see pages 235-246
Tightening torques for installation:
(1) One operation cycle means two movements, one to close and one to open contacts, as defined in EN 60947-5-1.

## Cable cross section (flexible copper strands)

Contact blocks 20, 21, 22, 33, 34:

Contact block $5,6,7,9,10,11,12,13,14,15,16,18:$
Contact block 2:

$\min$.	$1 \times 0.34 \mathrm{~mm}^{2}$	$(1 \times$ AWG 22)
$\max$.	$2 \times 1.5 \mathrm{~mm}^{2}$	$(2 \times$ AWG 16)
$\min$.	$1 \times 0.5 \mathrm{~mm}^{2}$	$(1 \times$ AWG 20)
$\max$.	$2 \times 2.5 \mathrm{~mm}^{2}$	$(2 \times$ AWG 14)
$\min$.	$1 \times 0.5 \mathrm{~mm}^{2}$	$(1 \times$ AWG 20)
$\max$.	$2 \times 1.5 \mathrm{~mm}^{2}$	$(2 \times$ AWG 16)

## In conformity with standards:

IEC 60947-5-1, EN 60947-5-1, EN 60947-1, EN 50047, IEC 60204-1, EN 60204-1,
EN ISO 14119, EN ISO 12100, IEC 60529, EN 60529, UL 508, CSA 22.2 No. 14

## Approvals:

IEC 60947-5-1, UL 508, CSA 22.2 No.14, GB14048.5-2001.

## In conformity with the requirements of:

Low Voltage Directive 2006/95/EC, Machinery Directive 2006/42/EC and EMC Directive 2004/108/EC.
Positive contact opening in conformity with standards:
IEC 60947-5-1, EN 60947-5-1.

Installation for safety applications:
Use only switches marked with the symbol $\Theta$ aside the product code. Always connect the safety circuit to the NC contacts (normally closed contacts: 11-12, 21-22 or 31-32) as stated in standard EN 60947-5-1, encl. K, par. 2. Actuate the switch at least up to the positive opening travel shown in the travel diagrams on page 240. Operate the switch at least with the positive opening force, indicated between brackets below each article, aside the minimum force value.
§ If not expressly indicated in this chapter, for correct installation and utilization of all articles see chapter utilization requirements from page 235 to page 246.

Electrical data			Utilization category			
	Thermal current (Ith):   Rated insulation voltage (Ui):   Rated impulse withstand voltage ( $\mathrm{U}_{\text {imp }}$ ):   Conditional short circuit current:   Protection against short circuits:   Pollution degree:	10 A   500 Vac 600 Vdc   400 Vac 500 Vdc (contact blocks 2, 11, 12, 20,   21, 22, 33, 34)   6 kV   4 kV (contact blocks 20, 21, 22, 33, 34)   1000 A according to EN 60947-5-1   type aM fuse 10 A 500 V   3	Alternating current: AC15 (50 $\div 60 \mathrm{~Hz}$ )			
			$\mathrm{Ue}(\mathrm{V})$	250	400	500
			le (A)	6	4	1
			Direct c	nt: D		
			$\mathrm{Ue}(\mathrm{V})$	24	125	250
			le (A)	6	1.1	0.4
	Thermal current (Ith):   Rated insulation voltage (Ui):   Protection against short circuits:   Pollution degree:	```4 A 250 Vac 300 Vdc type gG fuse 4 A 500 V 3```	Alternating current: AC15 (50 $\div 60 \mathrm{~Hz}$ )			
			$\mathrm{Ue}(\mathrm{V})$	24	120	250
			le (A)	4	4	4
			Direct c	ent: D		
			$\mathrm{Ue}(\mathrm{V})$	24	125	250
			le (A)	4	1.1	0.4
	Thermal current (Ith):   Rated insulation voltage (Ui):   Protection against short circuits:   Pollution degree:	```2 A 30 Vac 36 Vdc type gG fuse 2 A 500 V 3```	Alternating current: AC15 $(50 \div 60 \mathrm{~Hz})$			
			Ue (V)	24		
			le (A)	2		
			Direct c	ent: D		
			$\mathrm{Ue}(\mathrm{V})$ le (A)	24 2		

## Characteristics approved by IMO

Rated insulation voltage (Ui): 500 Vac
400 Vac (for contact blocks 2, 11, 12, 20, 21, $22,33,34)$
Conventional free air thermal current (lth): 10 A
Protection against short circuits:
type aM fuse 10 A 500 V
Rated impulse withstand voltage ( $U_{\text {imp }}$ ):
6 kV
4 kV (for contact blocks 20, 21, 22, 33, 34)
Protection degree of the housing: IP67
MV terminals (screw terminals)
Pollution degree 3
Utilization category: AC15
Operating voltage (Ue): $400 \mathrm{Vac}(50 \mathrm{~Hz})$
Operating current (le): 3 A
Forms of the contact element: $\mathrm{Za}, \mathrm{Zb}, \mathrm{Za}+\mathrm{Za}, \mathrm{Y}+\mathrm{Y}, \mathrm{X}+\mathrm{X}, \mathrm{Y}+\mathrm{Y}+\mathrm{X}, \mathrm{Y}+\mathrm{Y}+\mathrm{Y}, \mathrm{Y}+\mathrm{X}+\mathrm{X}$
Positive opening of contacts on contact blocks $5,6,7,9,11,13,14,16,18,20$,
$21,22,33,34$
In conformity with standards: EN 60947-1, EN 60947-5-1+ A1:2009, fundamental requirements of the Low Voltage Directive 2006/95/EC.

Please contact our technical service for the list of approved products.

## Characteristics approved by UL

Utilization categories Q300 (69 VA, 125 ... 250 Vdc)
A600 (720 VA, $120 \ldots 600 \mathrm{Vac}$ )
Data of housing type $1,4 \mathrm{X}$ "indoor use only", 12,13
For all contact blocks except 2 and 3 use 60 or $75^{\circ} \mathrm{C}$ copper ( Cu ) conductor, rigid or flexible, wire size AWG 12/14. Terminal tightening torque of 7.1 lb in ( 0.8 Nm ).
For contact blocks 2 and 3 use 60 or $75^{\circ} \mathrm{C}$ copper ( Cu ) conductor, rigid or flexible, wire size AWG 14. Terminal tightening torque of 12 lb in ( 1.4 Nm ).

In conformity with standard: UL 508, CSA 22.2 No. 14

Please contact our technical service for the list of approved products.

## Connection diagram for M12 connectors

Contact block 2   $1 \mathrm{NO}-1 \mathrm{NC}+1 \mathrm{NO}-1 \mathrm{NC}$	Contact block 5 $1 \mathrm{NO}+1 \mathrm{NC}$	Contact block 6 $1 \mathrm{NO}+1 \mathrm{NC}$	$\begin{gathered} \text { Contact block } 7 \\ 1 N O+1 N C \end{gathered}$	Contact block 9 2NC	$\begin{gathered} \text { Contact block } 10 \\ 2 \mathrm{NO} \end{gathered}$	Contact block 11 2NC	Contact block 12 2NO	Contact block 13 2NC
M12 connector, 8 poles	M12 connector, 5 poles							
Contacts Pin no.   NO $\quad 3-4$	Contacts Pin no.   NC $\quad 1-2$	Contacts Pin no   NC $\quad 1-2$	Contacts Pin no   NC 1-2	Contacts Pin no   NC $\quad 1-2$	Contacts Pin no.   NO 1-2	Contacts Pin no.   NC $\quad 1-2$	Contacts Pin no.   NO $\quad 1-2$	Contacts Pin no   NC (19) 1-2
NC 5-6	NO 3-4	NO 3-4	NO 3-4	NC 3-4	NO 3-4	NC 3-4	NO 3-4	NC (2) ${ }^{\circ} \mathrm{3}-4$
NC 7-8	ground 5							
NO 1-2								


Contact block 14 2NC	$\begin{aligned} & \text { Contact block } 15 \\ & 2 \text { NO } \end{aligned}$	$\begin{aligned} & \text { Contact block } 16 \\ & 2 N C \end{aligned}$	$\begin{gathered} \text { Contact block } 18 \\ 1 \mathrm{NO}+1 \mathrm{NC} \end{gathered}$	$\begin{gathered} \text { Contact block } 20 \\ 2 N C+1 N O \end{gathered}$	Contact block 21 3NC	Contact block 22   $1 \mathrm{NC}+2 \mathrm{NO}$	$\begin{gathered} \text { Contact block } 33 \\ 1 \mathrm{NC}+1 \mathrm{NO} \end{gathered}$	Contact block 34 2NC
M12 connector, 5 poles	M12 connector, 8 poles	M12 connector, 8 poles	M12 connector, 8 poles	M12 connector, 5 poles	M12 connector, 5 poles			
Contacts Pin no. NC (19) $\quad 1-2$	Contacts Pin no. $N O\left(1^{\circ}\right) \quad 1-2$	Contacts Pin no.   $N C$, lever at the right $1-2$	$\begin{array}{cc} \hline \text { Contacts } & \text { Pin no. } \\ \text { NC } & 1-2 \end{array}$	$\begin{array}{cc} \hline \text { Contacts } & \text { Pin no. } \\ \text { NC } & 3-4 \end{array}$	$\begin{array}{cc} \hline \text { Contacts } & \text { Pin no. } \\ \text { NC } & 3-4 \end{array}$	$\begin{array}{cc} \text { Contacts } & \text { Pin no. } \\ \text { NC } & 3-4 \end{array}$	$\begin{array}{cc} \text { Contacts } & \text { Pin no. } \\ \text { NC } & 1-2 \end{array}$	$\begin{array}{cc} \hline \text { Contacts } & \text { Pin no. } \\ \text { NC } & 1-2 \end{array}$
NC (29) 3-4	NO (29) 3-4	NC, lever to the left 3-4	NO 3-4	NC 5-6	NC 5-6	NO 5-6	NO 3-4	NC 3-4
ground 5	ground 5	ground 5	ground 5	NO 7-8	NC 7-8	NO 7-8	ground 5	ground 5
				ground 1	ground 1	ground 1		

## Contact block E1 PNP

M12 connector, 5 poles

Contacts	Pin no.
+	1
-	3
NC	2
NO	4
ground	5



	With stainless steel roller on request			With external rubber gasket
5 R	FM 505-M2 $\Theta$ 1NO+1NC	FM 5A5-M2 $\Theta$ 1NO+1NC	FM 507-M2 $\Theta$ 1NO+1NC	FM 5A7-M2 $\Theta$ 1NO+1NC
6 L	FM 605-M2 $\Theta$ 1NO+1NC	FM 6A5-M2 $\Theta$ 1NO+1NC	FM 607-M2 $\Theta$ 1NO+1NC	FM 6A7-M2 $\Theta$ 1NO+1NC
7 L0	FM 705-M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FM 7A5-M2 $\Theta$ 1NO+1NC	FM 707-M2 $\Theta$ 1NO+1NC	FM 7A7-M2 $\Theta$ 1NO+1NC
9 L	FM 905-M2 $\Theta$ 2NC	FM 9A5-M2 $\Theta$ 2NC	FM 907-M2 $\Theta$ 2NC	FM 9A7-M2 $\Theta$ 2NC
10 L	FM 1005-M2 2NO	FM 10A5-M2 2NO	FM 1007-M2 2NO	FM 10A7-M2 2NO
11 R	FM 1105-M2 $\Theta$ 2NC	FM 11A5-M2 $\Theta$ 2NC	FM 1107-M2 $\Theta$ 2NC	FM 11A7-M2 $\Theta$ 2NC
12 R	FM 1205-M2 2NO	FM 12A5-M2 2NO	FM 1207-M2 2NO	FM 12A7-M2 2NO
13 LV	FM 1305-M2 $\Theta$ 2NC	FM 13A5-M2 $\Theta$ 2NC	FM 1307-M2 $\Theta$ 2NC	FM 13A7-M2 $\Theta$ 2NC
14 LS	FM 1405-M2 $\Theta$ 2NC	FM 14A5-M2 $\Theta$ 2NC	FM 1407-M2 $\Theta$ 2NC	FM 14A7-M2 $\Theta$ 2NC
15 LS	FM 1505-M2 2NO	FM 15A5-M2 2NO	FM 1507-M2 2NO	FM 15A7-M2 2NO
18 LA	FM 1805-M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FM 18A5-M2 $\Theta$ 1NO+1NC	FM 1807-M2 $\Theta$ 1NO+1NC	FM 18A7-M2 $\Theta$ 1NO+1NC
20 L	FM 2005-M2 $\Theta$ 1NO+2NC	FM 20A5-M2 $\Theta$ 1NO+2NC	FM 2007-M2 $\Theta$ 1NO+2NC	FM 20A7-M2 $\Theta$ 1NO+2NC
21 L	FM 2105-M2 $\Theta 3 \mathrm{NC}$	FM 21A5-M2 $\Theta 3 N C$	FM 2107-M2 $\Theta$ 3NC	FM 21A7-M2 $\Theta 3 \mathrm{NC}$
22 L	FM 2205-M2 $\Theta$ 2NO+1NC	FM 22A5-M2 $\Theta$ 2NO+1NC	FM 2207-M2 $\Theta$ 2NO+1NC	FM 22A7-M2 $\Theta$ 2NO+1NC
2 L	FM 205-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC})$	FM 2A5-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC})$	FM 207-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC})$	FM 2A7-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC)}$
E1 A	FM E105-M2 1NO-1NC	FM E1A5-M2 1NO-1NC	FM E107-M2 1NO-1NC	FM E1A7-M2 1NO-1NC
Max. speed	page 239 - type 3			
Min. force	$6 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$4.3 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$4 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$3 \mathrm{~N}(25 \mathrm{~N} \Theta)$
Travel diagrams	page 240 - group 2	page 240 - group 2	page 240 - group 3	page 240 - group 3

All measures in the drawings are in mm
Items with code on green background are stock items



All measures in the drawings are in mm
Items with code on green background are stock items
Accessories See page 225
The 2D/3D files are available at www.pizzato.com



All measures in the drawings are in mm
Items with code on green background are stock items

		Porcelain roller	Other rollers available. See on page	r rollers available. See on page 82	er rollers available. See on page 82
5	R	FM 553-EOM2V9 $\Theta$ 1NO+1NC	FM 554-M2 $\odot$ 1NO+1NC	FM 555-M2 $\ominus^{(1)} 1 \mathrm{NO+1NC}$	FM 556-M2 $\ominus^{1 N O+1 N C}$
6	$\square$	FM 653-E0M2V9 $\Theta$ 1 ${ }^{\text {NO}+1 N C}$	FM 654-M2 ${ }^{\text {a }}$ 1NO+1NC	FM 655-M2 $\overbrace{}^{(1)} 1 \mathrm{NO}+1 \mathrm{NC}$	FM 656-M2 $\bigodot$ - ${ }^{1 N O+1 N C}$
7	L0	FM 753-EOM2V9 $\Theta$ 1NO+1NC	FM 754-M2 $\odot$ 1NO+1NC	FM 755-M2 $\ominus^{(1)} 1 \mathrm{NO}+1 \mathrm{NC}$	FM 756-M2 $\underbrace{1 N O+1 N C}$
9	$\square$	FM 953-E0M2V9 $\Theta$ 2NC	FM 954-M2 $\Theta$ 2NC	FM 955-M2 $\oplus^{(1)} 2 \mathrm{NC}$	FM 956-M2 $\Theta$ 2NC
10	$\square$	FM 1053-EOM2V9 2NO	FM 1054-M2 2NO	FM 1055-M2 2NO	FM 1056-M2 2NO
11	R		FM 1154-M2 $\Theta$ 2NC	FM 1155-M2 $\Theta^{(1)}$ 2NC	FM 1156-M2 $\Theta$ 2NC
12	R	FM 1253-EOM2V9	FM 1254-M2	FM 1255-M2	FM 1256-M2 2 N
13	Lv	FM 1353-EOM2V9 $\Theta$ 2NC	FM 1354-M2 $\Theta$ 2NC	FM 1355-M2 $\Theta{ }^{(1)}$ 2NC	FM 1356-M2 $\Theta$ 2NC
14	LS	FM 1453-EOM2V9 $\Theta$ 2NC	FM 1454-M2 $\Theta$ 2NC	FM 1455-M2 $\Theta^{(1)}$ 2NC	FM 1456-M2 $\Theta$ 2NC
15	LS	FM 1553-EOM2V9 2NO	FM 1554-M2 2NO	FM 1555-M2 2NO	FM 1556-M2 2NO
16	$\square$		FM 1654-M2 $\Theta$ 2NC	FM 1655-M2 $\Theta^{(1)}$ 2NC	FM 1656-M2 $\Theta$ 2NC
18	LA	FM 1853-EOM2V9 $\Theta$ 1NO+1NC	FM 1854-M2 $\Theta$ 1NO+1NC	FM 1855-M2 $\ominus^{(1)}{ }^{(1 N O+1 N C}$	FM 1856-M2 $\Theta$ 1 ${ }^{1 N O+1 N C}$
20	$\square$	FM 2053-EOM2V9 $\odot$ 1NO+2NC $^{\text {a }}$	FM 2054-M2 $\odot$ 1NO+2NC	FM 2055-M2 $\oplus^{(1)}{ }^{(1)}$ NO+2NC	FM 2056-M2 $\odot{ }^{1 N O+2 N C}$
21	$\square$	FM 2153-E0M2V9 $\Theta$ 3nc	FM 2154-M2 $\Theta 3 \mathrm{NC}$	FM 2155-M2 $\Theta^{(1)} 3 \mathrm{NC}$	FM 2156-M2 $\Theta$ 3NC
22	$\square$	FM 2253-EOM2V9 $¢ 2$ 2NO+1NC	FM 2254-M2 $\odot 2 \mathrm{NO}+1 \mathrm{NC}$	FM 2255-M2 $\oplus^{(1)}$ 2NO+1NC	FM 2256-M2 $\odot 2 \mathrm{NO}+1 \mathrm{NC}$
2	R	FM 253-E0M2 2x(1NO-1NC)	FM 254-M2 2x(1NO-1NC)	FM 255-M2 2x(1NO-1NC)	FM 256-M2 2x(1NO-1NC)
E1	成	FM E153-E0M2V9 1NO-1NC	FM E154-M2 1NO-1NC	FM E155-M2 1NO-1NC	FM E156-M2 1NO-1NC
Max. speed		$0.5 \mathrm{~m} / \mathrm{s}$	page 239 - type 1	page 239 - type 1	page 239 - type 1
Min. force		$0.03 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.06 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.06 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.06 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$
Travel diagrams		page 240 - group 6	page 240 - group 5	page 240 - group 5	page 240 - group 5


Contact blocks	Other rollers available. See on page 82	Fiber glass rod		Rope switch for signalling	
5 R	FM 557-M2 $\Theta$ 1NO+1NC	FM 569-M2	1NO+1NC	FM 576-M2 1NO+1NC	
6 L	FM 657-M2 $\Theta$ 1NO+1NC	FM 669-M2	$1 \mathrm{NO}+1 \mathrm{NC}$	FM 676-M2 1NO+1NC	
7 L0	FM 757-M2 $\Theta$ 1NO+1NC	FM 769-M2	$1 \mathrm{NO}+1 \mathrm{NC}$	FM 776-M2 1NO+1NC	
$9 \square$	FM 957-M2 $\Theta$ 2NC	FM 969-M2	2 NC	FM 976-M2 2NO	
10 L	FM 1057-M2 2NO	FM 1069-M2	2NO	FM 1076-M2 2NC	
11 R	FM 1157-M2 $\Theta$ 2NC	FM 1169-M2	2 NC	FM 1176-M2 2NO	
12 R	FM 1257-M2 2NO	FM 1269-M2	2NO	FM 1276-M2 2NC	
13 LV	FM 1357-M2 $\Theta$ 2NC	FM 1369-M2	2NC	FM 1376-M2 2NO	
14 LS	FM 1457-M2 $\Theta$ 2NC	FM 1469-M2	2NC	FM 1476-M2 2NO	
15 LS	FM 1557-M2 2NO	FM 1569-M2	2 NO	FM 1576-M2 2NC	
16 L	FM 1657-M2 $\Theta$ 2NC	FM 1669-M2	2NC		
18 LA	FM 1857-M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FM 1869-M2	1NO+1NC	FM 1876-M2 1NO+1NC	
20 L	FM 2057-M2 $\Theta$ 1NO+2NC	FM 2069-M2	$1 \mathrm{NO}+2 \mathrm{NC}$	FM 2076-M2 $2 \mathrm{NO}+1 \mathrm{NC}$	
21 L	FM 2157-M2 $\Theta 3 \mathrm{NC}$	FM 2169-M2	3NC	FM 2176-M2 3NO	
22 L	FM 2257-M2 $\Theta$ 2NO+1NC	FM 2269-M2	$2 \mathrm{NO}+1 \mathrm{NC}$	FM 2276-M2 1NO+2NC	
2 R	FM 257-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC)}$	FM 269-M2	$2 \times(1 \mathrm{NO}-1 \mathrm{NC)}$	FM 276-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC})$	
E1 A	FM E157-M2 1NO-1NC	FM E169-M2	1NO-1NC		
Max. speed	page 239 - type 1			$0.5 \mathrm{~m} / \mathrm{s}$	
Min. force	$0.06 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	0.06		initial 20 N - final 40 N	
Travel diagrams	page 240 - group 5	page 240	group 5	page 240-group 7	

${ }^{(1)}$ Positive opening only with actuator set to max. See page 81.
All measures in the drawings are in mm


Pizzato Elettrica has developed a reset device code W3 to make perfectly simultaneous the actuator and the contact block tripping. The new device is a block inserted between the switch body and the head, and could be rotated independently from this last one. This new device has following advantages:

- The reset device can be integrated into almost all standard actuator heads
- Contact bllocks with snap action are no more necessary because the tripping movement is made by the reset device itself
-The reset device can be rotated independently from the head for maximum flexibility during installation
- Two driving forces: standard and increased for applications with vibrations
- Mechanical endurance: 1 million operating cycles.

Contact type: $\begin{aligned} \mathbf{R} & =\text { snap action } \\ \hline \mathbf{L} & =\text { slow action } \end{aligned}$		With stainless steel roller on request	With stainless steel roller on request	
Contact blocks				
6 L	FM 601-W3M2 $\Theta$ 1NO+1NC	FM 602-W3M2 $\Theta$ 1NO+1NC	FM 605-W3M2 $\Theta$ 1NO+	FM 607-W3M2 $\Theta$ 1NO+
9 L	FM 901-W3M2 $\Theta$ 2NC	FM 902-W3M2 $\Theta$ 2NC	FM 905-W3M2 $\Theta$ 2NC	FM 907-W3M2 $\Theta$ 2NC
10 L	FM 1001-W3M2 2NO	FM 1002-W3M2 2NO	FM 1005-W3M2 2NO	FM 1007-W3M2 2NO
20 L	FM 2001-W3M2 $\Theta$ 1NO+2NC	FM 2002-W3M2 $\Theta$ 1NO+2NC	FM 2005-W3M2 $\Theta$ 1NO+2NC	FM 2007-W3M2 $\Theta$ 1NO+2NC
21 L	FM 2101-W3M2 $\Theta$ 3NC	FM 2102-W3M2 $\Theta$ 3NC	FM 2105-W3M2 $\Theta 3 N C$	FM 2107-W3M2 $\Theta$ 3NC
22 L	FM 2201-W3M2 $\Theta$ 2NO+1NC	FM 2202-W3M2 $\Theta$ 2NO+1NC	FM 2205-W3M2 $\Theta$ 2NO+1NC	FM 2207-W3M2 $\Theta$ 2NO+1NC
2 R	FM 201-W3M2 2NO+2NC	FM 202-W3M2 2NO+2NC	FM 205-W3M2 2NO+2NC	FM 207-W3M2 2NO+2NC
Max. speed	page 239 - type 4	page 239 - type 3	page 239 - type 3	page 239 - type 3
Min. force	$4.5 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$4 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$4 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$2.5 \mathrm{~N}(25 \mathrm{Ne})$
Travel diagrams	page 241 - group 1	page 241 - group 2	page 241 - group 2	page 241 - group 3



All measures in the drawings are in mm


## Increased actuating force



The switch can be delivered with increased actuating force (option W4). Ideal for applications with vibrations.

Actuators	Min. force
$01,14,15,16$	7 N
02,05	6 N
07	3.5 N
$30 \ldots 57$	0.08 Nm

## Position switches with revolving lever without actuator

Contact type:			With manual reset knob
	action action action apped action action d and ed action actiont ronic		
Contact blocks			
5	R	FM 538-M2 $\Theta$ 1NO+1NC	
6	L	FM 638-M2 $\Theta$ 1NO+1NC	FM 638-W3M2 $\Theta$ 1NO+1NC
7	LO	FM 738-M2 $\Theta$ 1NO+1NC	
9	$\square$	FM 938-M2 $\Theta$ 2NC	FM 938-W3M2 $\Theta$ 2NC
10	L	FM 1038-M2 2NO	FM 1038-W3M2 2NO
11	R	FM 1138-M2 $\Theta$ 2NC	
12	R	FM 1238-M2 2NO	
13	LV	FM 1338-M2 $\Theta$ 2NC	
14	LS	FM 1438-M2 $\Theta$ 2NC	
15	LS	FM 1538-M2 2NO	
16	$\square$	FM 1638-M2 $\Theta$ 2NC	
18	LA	FM 1838-M2 $\Theta$ 1NO+1NC	
20	$\square$	FM 2038-M2 $\Theta$ 1NO+2NC	FM 2038-W3M2 $\Theta$ 1NO+2NC
21	L	FM 2138-M2 $\Theta$ 3NC	FM 2138-W3M2 $\Theta 3 N C$
22	L	FM 2238-M2 $\Theta$ 2NO+1NC	FM 2238-W3M2 $\Theta$ 2NO+1NC
2	R	FM 238-M2 2x(1NO-1NC)	FM 238-W3M2 2NO+2NC
E1	㳓	FM E138-M2 1NO-1NC	
	orce	$0.06 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.07 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta$ )
Trave	agrams	page 240 - group 5	page 241 - group 4

All measures in the drawings are in mm

## Loose actuators

## IMPORTANT

For safety applications: join only switches and actuators marked with symbol $\Theta$ aside the product code.
For more information about safety applications see details on page 235.

IMPORTANT: These loose actuators can be used with items of series FR, FM, FX, FZ and FK only.					
Technopolymer roller $\varnothing 18$ mm	Technopolymer roller $\varnothing 18$ mm	Adjustable square rod, $3 \times 3 \times 125 \mathrm{~mm}$	Flexible rod with pointed end	Adjustable round rod $\varnothing 3 \times 125 \mathrm{~mm}$	Technopolymer roller $\varnothing 20$ mm
VF LE30 $\Theta$	VF LE31 $\Theta$	VF LE33	VF LE34	VF LE50	VF LE51 $\Theta$


Technopolymer roller $\varnothing 20$ mm	Porcelain roller	Technopolymer roller $\varnothing 20$ mm	Adjustable actuator with technopolymer roller	Adjustable safety actuator with technopolymer roller	Technopolymer roller $\varnothing 20$ mm	Adjustable fiber glass rod
VF LE52 $\Theta$	VF LE53 $\Theta{ }^{\text {(2) }}$	VF LE54 $\Theta$	VF LE55 $\Theta{ }^{(1)}$	VF LE56 $\Theta$	VF LE57 $\Theta$	VF LE69

[^4]
## Special loose actuators

IMPORTANT: These loose actuators can be used with items of series FR, FM, FX, FZ and FK only,
Stainless steel rollers, Ø 20 mm

VF LE31-R24 $\Theta$	VF LE51-R24 $\Theta$	VF LE52-R24 $\Theta$	VF LE54-R24 $\Theta$	VF LE55-R24 $\Theta^{(1)}$	VF LE56-R24 $\Theta$	VF LE57-R24 $\Theta$

Technopolymer rollers, $\varnothing 35$ mm
VF LE31-R25 $\Theta$ (4) VF LE51-R25 $\Theta$ (4) $\operatorname{VF}$

Rubber rollers, $\varnothing 40 \mathrm{~mm}$

VF LE31-R5 $\underbrace{(4)}$	VF LE51-R5 ${ }^{(4)}$	VF LE52-R5 $\Theta$	VF LE54-R5 $\Theta$ (4)	VF LE55-R5 $\underbrace{(1)}$	VF LE56-R5 $\Theta$	VF LE57-R5 $\Theta{ }^{(4)}$

Rubber rollers, $\varnothing 50 \mathrm{~mm}$


## Protruding rubber rollers, $\varnothing 50 \mathrm{~mm}$



## Selection diagram



Threaded conduit entry	
$\mathbf{M 2}$	$\mathrm{M} 20 \times 1.5$ (standard)
$\mathbf{M 1}$	$\mathrm{M} 16 \times 1.5$
	$\mathrm{PG} \mathrm{13.5}$
$\mathbf{A}$	PG 11

$\longrightarrow$
product options
accessory sold separately

With cable gland	
$\mathbf{K} \mathbf{1 2 3}$	for cables from $\varnothing 6$ to $\varnothing 12 \mathrm{~mm}$ from   the right
$\mathbf{K} \mathbf{2 2 3}$	for cables from $\varnothing 6$ to $\varnothing 12 \mathrm{~mm}$ from   the left
$\mathbf{K} \mathbf{1 2 7}$	for cables from $\varnothing \mathbf{~ t o ~} \varnothing \mathbf{7 m m}$ from   the right
$\mathbf{K 2 2 7}$	for cables from $\varnothing 3$ to $\varnothing \mathbf{7 m m}$ from   the left




## Main features

- Technopolymer housing, two conduit entries
- Protection degree IP67
- 17 contact blocks available
- 43 actuators available
- Versions with stainless steel external parts
- Versions with M12 connector
- Versions with gold-plated silver contacts


## Markings and quality marks:

## 

IMQ approval:	
EG610	
CL approval:	E131787
CCC approval:	2007010305230013

## Technical data

## Housing

Housing made of fiber glass reinforced technopolymer, self-extinguishing, shock-proof and with double insulation:
Two knock-out threaded conduit entries Protection degree:

M20x1.5 (standard)
IP67 according to EN 60529 with cable gland having equal or higher protection degree

## General data

Ambient temperature:
Max. actuation frequency:
Mechanical endurance:
Mounting position:
Safety parameters:
$\mathrm{B}_{10 \mathrm{~d}}$ :
Mechanical interlock, not coded:
Tightening torques for installation:
see pages 235-246
(1) One operation cycle means two movements, one to close and one to open contacts, as defined in
EN 60947-5-1. EN 60947-5-1.

## Cable cross section (flexible copper strands)

Contact blocks 20, 21, 22, 33, 34:
Contact block $5,6,7,9,10,11,12,13,14,15,16,18$ :
Contact block 2:

## In conformity with standards:

IEC 60947-5-1, EN 60947-5-1, EN 60947-1, IEC 60204-1, EN 60204-1, EN ISO 14119, EN ISO 12100, IEC 60529, EN 60529, UL 508, CSA 22.2 No. 14

## Approvals:

IEC 60947-5-1, UL 508, CSA 22.2 No.14, GB14048.5-2001.

## In conformity with the requirements of:

Low Voltage Directive 2006/95/EC, Machinery Directive 2006/42/EC and EMC Directive 2004/108/EC.
Positive contact opening in conformity with standards:
IEC 60947-5-1, EN 60947-5-1.

Installation for safety applications:
Use only switches marked with the symbol $\Theta$ aside the product code. Always connect the safety circuit to the NC contacts (normally closed contacts: 11-12, $21-22$ or 31-32) as stated in standard EN 60947-5-1, encl. K, par. 2. Actuate the switch at least up to the positive opening travel shown in the travel diagrams on page 240 . Operate the switch at least with the positive opening force, indicated between brackets below each article, aside the minimum force value.
§ If not expressly indicated in this chapter, for correct installation and utilization of all articles see chapter utilization requirements from page 235 to page 246.

Electrical data			Utilization category			
	Thermal current (Ith): Rated insulation voltage (Ui):	$10 \mathrm{~A}$   500 Vac 600 Vdc   400 Vac 500 Vdc (contact blocks 2, 11, 12, 20,   21, 22, 33, 34)   6 kV   4 kV (contact blocks 20, 21, 22, 33, 34) 1000 A according to EN 60947-5-1 type aM fuse 10 A 500 V 3	Alternating current: AC15 ( $50 \div 60 \mathrm{~Hz}$ )			
			$\mathrm{Ue}(\mathrm{V})$	250	400	500
			le (A)	6	4	1
	Rated impulse withstand voltage $\left(\mathrm{U}_{\mathrm{imp}}\right)$ :   Conditional short circuit current:   Protection against short circuits:   Pollution degree:		Direct current: DC13			
			$\mathrm{Ue}(\mathrm{V})$	24	125	250
			le (A)	6	1.1	0.4
	Thermal current (lth):   Rated insulation voltage (Ui):   Protection against short circuits:   Pollution degree:	```4 A 250 Vac 300 Vdc fuse 4 A 500 V type gG 3```	Alternating current: AC15 ( $50 \div 60 \mathrm{~Hz}$ )			
			$\mathrm{Ue}(\mathrm{V})$	24	120	250
			le (A)	4	4	4
			Direct c	ent: D		
			$\mathrm{Ue}(\mathrm{V})$	24	125	250
			le (A)	4	1.1	0.4
	Thermal current (lth):   Rated insulation voltage (Ui):   Protection against short circuits:   Pollution degree:	```2A 30 Vac 36 Vdc fuse 2 A 500 V type gG 3```	Alternating current: AC15 ( $50 \div 60 \mathrm{~Hz}$ )			
			le (A)	2		
			Direct c	ent: D		
			Ue (V)	24		
			le (A)	2		

## Characteristics approved by IMQ

Rated insulation voltage (Ui):

## 500 Vac

400 Vac (for contact blocks 2, 11, 12, 20, 21,
22, 33, 34)
Conventional free air thermal current (lth): 10
Protection against short circuits: t
ype aM fuse 10 A 500 V
Rated impulse withstand voltage ( $\mathrm{U}_{\mathrm{imp}}$ ): 6 kV
4 kV (for contact blocks $20,21,22,33,34$ )
Protection degree of the housing: IP67
MV terminals (screw terminals)
Pollution degree 3
Utilization category: AC15
Operating voltage (Ue): $400 \mathrm{Vac}(50 \mathrm{~Hz})$
Operating current (le): 3 A
Forms of the contact element: $\mathrm{Za}, \mathrm{Zb}, \mathrm{Za}+\mathrm{Za}, \mathrm{Y}+\mathrm{Y}, \mathrm{X}+\mathrm{X}, \mathrm{Y}+\mathrm{Y}+\mathrm{X}, \mathrm{Y}+\mathrm{Y}+\mathrm{Y}, \mathrm{Y}+\mathrm{X}+\mathrm{X}$
Positive opening of contacts on contact blocks $5,6,7,9,11,13,14,16,18,20$,
21, 22, 33, 34
In conformity with standards: EN 60947-1, EN 60947-5-1+ A1:2009, fundamental requirements of the Low Voltage Directive 2006/95/EC.

Please contact our technical service for the list of approved products

## Characteristics approved by UL

Utilization categories Q300 ( $69 \mathrm{VA}, 125 \ldots 250 \mathrm{Vdc}$ )

$$
\text { A600 (720 VA, } 120 \text {... } 600 \mathrm{Vac} \text { ) }
$$

Data of housing type $1,4 \mathrm{X}$ "indoor use only", 12,13
For all contact blocks except 2 and 3 use 60 or $75^{\circ} \mathrm{C}$ copper ( Cu ) conductor, rigid or flexible, wire size AWG 12/14. Terminal tightening torque of 7.1 lb in (0.8 Nm).

For contact blocks 2 and 3 use 60 or $75^{\circ} \mathrm{C}$ copper ( Cu ) conductor, rigid or flexible, wire size AWG 14. Terminal tightening torque of 12 lb in ( 1.4 Nm ).

In conformity with standard: UL 508, CSA 22.2 No. 14

Please contact our technical service for the list of approved products.

## Connection diagram for M12 connectors

Contact block 2   $1 \mathrm{NO}-1 \mathrm{NC}+1 \mathrm{NO}-1 \mathrm{NC}$	Contact block 5 1NO+1NC	$\begin{gathered} \text { Contact block } 6 \\ 1 \mathrm{NO}+1 \mathrm{NC} \end{gathered}$	$\begin{aligned} & \text { Contact block } 7 \\ & 1 \mathrm{NO}+1 \mathrm{NC} \end{aligned}$	$\begin{gathered} \text { Contact block } 9 \\ \text { 2NC } \end{gathered}$	$\begin{gathered} \text { Contact block } 10 \\ 2 \mathrm{NO} \end{gathered}$	Contact block 11 2NC	$\begin{aligned} & \text { Contact block } 12 \\ & 2 \mathrm{NO} \end{aligned}$	Contact block 13 2NC
M12 connector, 8 poles	M12 connector, 4 poles							
$\begin{array}{cc}\text { Contacts } & \text { Pin no. } \\ \text { NO } & 3-4\end{array}$	Contacts Pin no.   NC 1-2	Contacts Pin no. $\text { NC } \quad 1-2$	Contacts Pin no.   NC 1-2	Contacts Pin no. $\text { NC } \quad 1-2$	$\begin{array}{cc}\text { Contacts } & \text { Pin no. } \\ \text { NO } & 1-2\end{array}$	Contacts Pin no.   NC $\quad 1-2$	Contacts Pin no. $\text { NO } \quad 1-2$	Contacts Pin no.   NC (19) 1-2
NC 5-6	NO 3-4	NO 3-4	NO 3-4	NC 3-4	NO 3-4	NC 3-4	NO 3-4	NC (20) 3 -4
NC 7-8								
NO 1-2								
Contact block 14 2NC	Contact block 15 2NO	Contact block 16 2NC	Contact block 18 $1 \mathrm{NO}+1 \mathrm{NC}$	Contact block 20 $2 \mathrm{NC}+1 \mathrm{NO}$	$\begin{gathered} \text { Contact block } 21 \\ \text { 3NC } \end{gathered}$	Contact block 22 $1 \mathrm{NC}+2 \mathrm{NO}$	Contact block 33 $1 \mathrm{NC}+1 \mathrm{NO}$	Contact block 34 2NC
M12 connector, 4 poles	M12 connector, 8 poles	M12 connector, 8 poles	M12 connector, 8 poles	M12 connector, 4 poles	M12 connector, 4 poles			
Contacts Pin no.   NC (1 ${ }^{\circ}$ ) $1-2$	Contacts Pin no. $N O\left(1^{\circ}\right) \quad 1-2$	Contacts Pin no.   NC, lever at the right $1-2$	Contacts Pin no.   NC $\quad 1-2$	Contacts Pin no.   NC $\quad 3-4$	Contacts Pin no.   NC $\quad 3-4$	Contacts Pin no   NC $\quad$ 3-4	Contacts Pin no.   NC 1-2	Contacts Pin no.   NC $\quad 1-2$
NC (20) 3 -4	NO (2) ${ }^{\circ}$ 3-4	$N C$, lever to the left 3-4	NO 3-4	NC 5-6	NC 5-6	NO 5-6	NO 3-4	NC $\quad 3-4$
				NO 7-8	NC 7-8	NO 7-8		



M12 connector, 4 poles

Contacts	Pin no.
+	1
-	3
NC	2
NO	4




All measures in the drawings are in mm
Items with code on green background are stock items

Contact type:	With external rubber gasket			
5 R	FX 508-M2 $\Theta$ 1 ${ }^{\text {NO}+1 \mathrm{NC}}$	FX 512-M2 $\Theta$ 1 ${ }^{\text {NO}+1 \mathrm{NC}}$	FX 513-M2 $\Theta$ 1 ${ }^{\text {NO}+1 \mathrm{NC}}$	FX 514-M2 $\Theta$ - ${ }^{\text {NO}+1 N C}$
6 L	FX 608-M2 $\Theta$ 1 ${ }^{1 \mathrm{O}+1 \mathrm{NC}}$	FX 612-M2 $\Theta$ 1 ${ }^{1 N+1 N C}$	FX 613-M2 $\Theta$ 1 ${ }^{\text {NO}+1 \mathrm{NC}}$	FX 614-M2 $\Theta$ 1 ${ }^{\text {NO}+1 N C}$
7 L0	FX 708-M2 ¢ $^{1} 1 \mathrm{NO}+1 \mathrm{NC}$	FX 712-M2 $\odot 1 \mathrm{NO}+1 \mathrm{NC}$	FX 713-M2 $\Theta$ 1 ${ }^{\text {NO}+1 \mathrm{NC}}$	FX 714-M2 $\odot 1$ (NO+1NC
$9 \square$	FX 908-M2 $\Theta$ 2NC	FX 912-M2 $\Theta$ 2NC	FX 913-M2 $\Theta$ 2NC	FX 914-M2 $\Theta$ 2NC
$10 \square$	FX 1008-M2 2NO	FX 1012-M2 2NO	FX 1013-M2 2NO	FX 1014-M2 2NO
11 R	FX 1108-M2 $\Theta$ 2NC	FX 1112-M2 $\Theta$ 2NC	FX 1113-M2 $\Theta$ 2NC	FX 1114-M2 $\Theta$ 2NC
12 R	FX 1208-M2 2NO	FX 1212-M2 2NO	FX 1213-M2 2NO	FX 1214-M2 2NO
13 LV	FX 1308-M2 $\Theta$ 2NC	FX 1312-M2 $\Theta$ 2NC	FX 1313-M2 $\Theta$ 2NC	FX 1314-M2 $\oplus$ 2NC
14 LS	FX 1408-M2 $\Theta$ 2NC	FX 1412-M2 $\Theta$ 2NC	FX 1413-M2 $\Theta$ 2NC	FX 1414-M2 $\Theta$ 2NC
15 LS	FX 1508-M2 2NO	FX 1512-M2 2NO	FX 1513-M2 2NO	FX 1514-M2 2NO
18 LA	FX 1808-M2 $\Theta$ 1 ${ }^{\text {NO}}+1 \mathrm{NC}$	FX 1812-M2 $\odot 1 \mathrm{NO}^{+1 \mathrm{NC}}$	FX 1813-M2 $\Theta$ 1 ${ }^{\text {NO}+1 \mathrm{NC}}$	FX 1814-M2 $\Theta$ 1 ${ }^{\text {NO}+1 \mathrm{NC}}$
20 L	FX 2008-M2 $\Theta$ 1 ${ }^{\text {NO}+2 N C}$	FX 2012-M2 $\Theta$ 1 ${ }^{\text {NO}+2 N C}$	FX 2013-M2 $\Theta$ 1 ${ }^{\text {NO}+2 N C}$	FX 2014-M2 $\Theta$ 1NO+2NC
21 L	FX 2108-M2 $\Theta$ 3NC	FX 2112-M2 $\Theta 3 \mathrm{NC}$	FX 2113-M2 $\Theta$ 3NC	FX 2114-M2 $\Theta$ 3NC
$22 \square$	FX 2208-M2 $\Theta$ 2NO+1NC	FX 2212-M2 $\Theta$ 2NO+1NC	FX 2213-M2 $\Theta 2 \mathrm{NO}+1 \mathrm{NC}$	FX 2214-M2 $\Theta$ 2NO+1NC
2 R	FX 208-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC)}$	FX 212-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC)}$	FX 213-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC)}$	FX 214-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC)}$
E1 罭	FX E108-M2 1NO-1NC	FX E112-M2 1NO-1NC	FX E113-M2 1NO-1NC	FX E114-M2 1NO-1NC
Max. speed	page 239 - type 4	page 239 - type 4	page 239 - type 2	page 239 - type 4
Min. force	$8 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$8 \mathrm{~N}(25 \mathrm{~N} \oplus)$	$8 \mathrm{~N}(25 \mathrm{~N} \oplus)$	$8 \mathrm{~N}(25 \mathrm{~N} \oplus)$
Travel diagrams	page 240 - group 1			



All measures in the drawings are in mm
Items with code on green background are stock items
Accessories See page 225
The 2D/3D files are available at www.pizzato.com



All measures in the drawings are in mm

Contact type:		Other rollers available. See on page 94	Porcelain roller	Other rollers available. See on page 94	Other rollers available. See on page 94
	action action action aped action action actiond dand action endent action onic				
5	R	FX 552-M2 $\Theta$ 1NO+1NC	FX 553-E0M2V9 $\Theta 1$ 1NO+1NC	FX 554-M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FX 555-M2 $\underbrace{\text { (1) }} 1 \mathrm{NO}+1 \mathrm{NC}$
6	L	FX 652-M2 $\Theta$ 1NO+1NC	FX 653-E0M2V9 $\Theta$ 1NO+1NC	FX 654-M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FX 655-M2 $\underbrace{\text { (1) }} 1 \mathrm{NO}+1 \mathrm{NC}$
7	LO	FX 752-M2 $\Theta$ 1NO+1NC	FX 753-E0M2V9 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FX 754-M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FX 755-M2 $\underbrace{\text { (1) }} 1 \mathrm{NO}+1 \mathrm{NC}$
9	$\square$	FX 952-M2 $\Theta$ 2NC	FX 953-E0M2V9 $\Theta$ 2NC	FX 954-M2 $\Theta$ 2NC	FX 955-M2 $\underbrace{(1)} 2 \mathrm{NC}$
10	L	FX 1052-M2 2NO	FX 1053-E0M2V9 2NO	FX 1054-M2 2NO	FX 1055-M2 2NO
11	R	FX 1152-M2 $\Theta$ 2NC		FX 1154-M2 $\Theta$ 2NC	FX 1155-M2 $\underbrace{(1)}{ }^{(1) N C}$
12	R	FX 1252-M2 2NO	FX 1253-E0M2V9 2NO	FX 1254-M2 2NO	FX 1255-M2 2NO
13	LV	FX 1352-M2 $\Theta$ 2NC	FX 1353-E0M2V9 $\Theta$ 2NC	FX 1354-M2 $\Theta$ 2NC	FX 1355-M2 $\Theta$ (1) ${ }^{\text {2NC }}$
14	LS	FX 1452-M2 $\Theta$ 2NC	FX 1453-E0M2V9 $\Theta$ 2NC	FX 1454-M2 $\Theta$ 2NC	FX 1455-M2 $\Theta{ }^{\text {(1) }} 2 \mathrm{NC}$
15	LS	FX 1552-M2 2NO	FX 1553-E0M2V9 2NO	FX 1554-M2 2NO	FX 1555-M2 2NO
16	LI	FX 1652-M2 $\Theta$ 2NC		FX 1654-M2 $\Theta$ 2NC	FX 1655-M2 $\Theta{ }^{\text {(1) }} 2 \mathrm{NC}$
18	LA	FX 1852-M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FX 1853-E0M2V9 $\Theta$ 1NO+1NC	FX 1854-M2 $\Theta$ 1NO+1NC	FX 1855-M2 $\Theta$ (1) $1 \mathrm{NO}+1 \mathrm{NC}$
20	$\square$	FX 2052-M2 $\Theta$ 1NO+2NC	FX 2053-E0M2V9 $\Theta$ 1NO+2NC	FX 2054-M2 $\Theta$ 1NO+2NC	FX 2055-M2 $\Theta$ (1) $1 \mathrm{NO}+2 \mathrm{NC}$
21	L	FX 2152-M2 $\Theta 3 \mathrm{NC}$	FX 2153-E0M2V9 $\Theta 3 \mathrm{SC}$	FX 2154-M2 $\Theta$ 3NC	FX 2155-M2 ${ }^{(1)}{ }^{\text {(1) }} 3 \mathrm{NC}$
22	L	FX 2252-M2 $\Theta$ 2NO+1NC	FX 2253-E0M2V9 $\Theta$ 2NO+1NC	FX 2254-M2 $\Theta$ 2NO+1NC	FX 2255-M2 $\Theta{ }^{\text {(1) }} 2 \mathrm{NOO}+1 \mathrm{NC}$
2	R	FX 252-M2 2x(1NO-1NC)	FX 253-E0M2 2x(1NO-1NC)	FX 254-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC)}$	FX 255-M2 2x(1NO-1NC)
E1	交	FX E152-M2 1NO-1NC	FX E153-E0M2V9 1NO-1NC	FX E154-M2 1NO-1NC	FX E155-M2 1NO-1NC
Max. speed		page 239 - type 1	$0.5 \mathrm{~m} / \mathrm{s}$	page 239 - type 1	page 239 - type 1
Min. force		$0.06 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.03 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.06 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.06 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$
	grams	page 240 - group 5	page 240 - group 6	page 240 - group 5	page 240 - group 5


Contact blocks		Other rollers available. See on page 94	Other rollers available. See on page 94	Fiber glass rod	Rope switch for signalling
5	R	FX 556-M2 $\Theta$ 1NO+1NC	FX 557-M2 $\Theta$ 1NO+1NC	FX 569-M2 1NO+1NC	FX 576-M2 1NO+1NC
6	$\square$	FX 656-M2 $\Theta$ 1NO+1NC	FX 657-M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FX 669-M2 1NO+1NC	FX 676-M2 1NO+1NC
7	LO	FX 756-M2 $\Theta$ 1NO+1NC	FX 757-M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FX 769-M2 1NO+1NC	FX 776-M2 1NO+1NC
9	L	FX 956-M2 $\Theta$ 2NC	FX 957-M2 $\Theta$ 2NC	FX 969-M2 2NC	FX 976-M2 2NO
10	L	FX 1056-M2 2NO	FX 1057-M2 2NO	FX 1069-M2 2NO	FX 1076-M2 2NC
11	R	FX 1156-M2 $\Theta$ 2NC	FX 1157-M2 $\Theta$ 2NC	FX 1169-M2 2NC	FX 1176-M2 2NO
12	R	FX 1256-M2 2NO	FX 1257-M2 2NO	FX 1269-M2 2NO	FX 1276-M2 2NC
13	LV	FX 1356-M2 $\Theta$ 2NC	FX 1357-M2 $\Theta$ 2NC	FX 1369-M2 2NC	FX 1376-M2 2NO
14	LS	FX 1456-M2 $\Theta$ 2NC	FX 1457-M2 $\Theta$ 2NC	FX 1469-M2 2NC	FX 1476-M2 2 NO
15	LS	FX 1556-M2 2NO	FX 1557-M2 2NO	FX 1569-M2 2NO	FX 1576-M2 2NC
16	L	FX 1656-M2 $\Theta$ 2NC	FX 1657-M2 $\Theta$ 2NC	FX 1669-M2 2NC	
18	LA	FX 1856-M2 $\Theta$ 1NO+1NC	FX 1857-M2 $\Theta$ 1NC+1NO	FX 1869-M2 1NC+1NO	FX 1876-M2 1NO+1NC
20	$\square$	FX 2056-M2 $\Theta 1 \mathrm{NO}+2 \mathrm{NC}$	FX 2057-M2 $\Theta 1$ NO+2NC	FX 2069-M2 1NO+2NC	FX 2076-M2 2NO+1NC
21	L	FX 2156-M2 $\Theta 3 \mathrm{NC}$	FX 2157-M2 $\Theta 3 \mathrm{NC}$	FX 2169-M2 3NC	FX 2176-M2 3NO
22	L	FX 2256-M2 $\Theta$ 2NO+1NC	FX 2257-M2 $\Theta$ 2NO+1NC	FX 2269-M2 $2 \mathrm{NO}+1 \mathrm{NC}$	FX 2276-M2 1NO+2NC
2	R	FX 256-M2 2x(1NO-1NC)	FX 257-M2 2x(1NO-1NC)	FX 269-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC}$ )	FX 276-M2 2x(1NO-1NC)
E1	同	FX E156-M2 1NO-1NC	FX E157-M2 1NO-1NC	FX E169-M2 1NO-1NC	
Max. speed		page 239 - type 1	page 239 - type 1	$1.5 \mathrm{~m} / \mathrm{s}$	$0.5 \mathrm{~m} / \mathrm{s}$
Min. force		$0.06 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.06 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	0.06 Nm	initial 20 N - final 40 N
Travel diagrams		page 240 - group 5	page 240 - group 5	page 240 - group 5	page 240-group 7

${ }^{(1)}$ Positive opening only with actuator set to max. See page 93.
All measures in the drawings are in mm


Pizzato Elettrica has developed a reset device code W3 to make perfectly simultaneous the actuator and the contact block tripping. The new device is a block inserted between the switch body and the head, and could be rotated independently from this last one. This new device has following advantages:

- The reset device can be integrated into almost all standard actuator heads
- Contact bllocks with snap action are no more necessary because the tripping movement is made by the reset device itself
-The reset device can be rotated independently from the head for maximum flexibility during installation
- Two driving forces: standard and increased for applications with vibrations
- Mechanical endurance: 1 million operating cycles.


	With $\varnothing 12 \mathrm{~mm}$ stainless steel roller on request	With $\varnothing 20 \mathrm{~mm}$ stainless steel roller on request	Other rollers available. See on page 94	Other rollers available. See on page 94
6 L	FX 615-W3M2 $\Theta$ 1NO+1NC	FX 630-W3M2 $\Theta$ 1NO+1NC	FX 631-W3M2 $\Theta$ 1NO+1NC	FX 651-W3M2 $\Theta$ 1NO+1NC
9 L	FX 915-W3M2 $\Theta$ 2NC	FX 930-W3M2 $\Theta$ 2NC	FX 931-W3M2 $\Theta$ 2NC	FX 951-W3M2 $\Theta$ 2NC
10 L	FX 1015-W3M2 2NO	FX 1030-W3M2 2NO	FX 1031-W3M2 2NO	FX 1051-W3M2 2NO
20 L	FX 2015-W3M2 $\Theta$ 1NO+2NC	FX 2030-W3M2 $\Theta$ 1NO+2NC	FX 2031-W3M2 $\Theta$ 1NO+2NC	FX 2051-W3M2 $\Theta$ 1NO+2NC
21 L	FX 2115-W3M2 $\Theta 3 \mathrm{NC}$	FX 2130-W3M2 $\Theta 3 \mathrm{NC}$	FX 2131-W3M2 $\Theta 3 \mathrm{NC}$	FX 2151-W3M2 $\Theta 3 N C$
22 L	FX 2215-W3M2 $\Theta$ 2NO+1NC	FX 2230-W3M2 $\Theta$ 2NO+1NC	FX 2231-W3M2 $\Theta$ 2NO+1NC	FX 2251-W3M2 $\Theta$ 2NO+1NC
2 R	FX 215-W3M2 2NO+2NC	FX 230-W3M2 2NO+2NC	FX 231-W3M2 2NO+2NC	FX 251-W3M2 2NO+2NC
Max. speed	page 239 - type 2	page 239 - type 1	page 239 - type 1	page 239 - type 1
Min. force	$4.5 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$0.07 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.07 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.07 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$
Travel diagrams	page 241 - group 1	page 241 - group 4	page 241 - group 4	page 241 - group 4

All measures in the drawings are in mm


All measures in the drawings are in mm

## Increased actuating force



The switch can be delivered with increased actuating force (option W4). Ideal for applications with vibra-
tions.

Actuators	Min. force
$01,14,15,16$	7 N
02,05	6 N
07	3.5 N
$30 \ldots 57$	0.08 Nm

## Position switches with revolving lever without actuator

Contact type:			With manual reset knob
5	R	FX 538-M2 $\Theta$ 1NO+1NC	
6	L	FX 638-M2 $\Theta$ 1NO+1NC	FX 638-W3M2 $\Theta$ 1NO+1NC
7	L0	FX 738-M2 $\Theta$ 1NO+1NC	
9	L	FX 938-M2 $\Theta$ 2NC	FX 938-W3M2 $\Theta$ 2NC
10	L	FX 1038-M2 2NO	FX 1038-W3M2 2NO
11	R	FX 1138-M2 $\Theta$ 2NC	
12	R	FX 1238-M2 2NO	
13	LV	FX 1338-M2 $\Theta$ 2NC	
14	LS	FX 1438-M2 $\Theta$ 2NC	
15	LS	FX 1538-M2 2NO	
16	L	FX 1638-M2 $\Theta$ 2NC	
18	LA	FX 1838-M2 $\Theta$ 1NO+1NC	
20	L	FX 2038-M2 $\Theta$ 1NO+2NC	FX 2038-W3M2 $\Theta 1 \mathrm{NO}+2 \mathrm{NC}$
21	L	FX 2138-M2 $\Theta$ 3NC	FX 2138-W3M2 $\Theta$ 3NC
22	L	FX 2238-M2 $\Theta$ 2NO+1NC	FX 2238-W3M2 $\Theta 2 \mathrm{NO}+1 \mathrm{NC}$
2	R	FX 238-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC})$	FX 238-W3M2 2NO+2NC
E1	同	FX E138-M2 1NO-1NC	
Min. force		$0.06 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.07 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$
Travel diagrams		page 240 - group 5	page 241 - group 4

## IMPORTANT

For safety applications: join only switches and actuators marked with symbol $\Theta$ aside the product code.
For more information about safety applications see details on page 235.

All measures in the drawings are in mm


VF LE52 $\Theta$	VF LE53 $\Theta{ }^{(2)}$	VF LE54 $\Theta$	VF LE55 $\Theta{ }^{\text {(1) }}$	VF LE56 $\Theta$	VF LE57 $\Theta$	VF LE69
- ${ }^{(1)}$ Actuator VF LE55 can only be used in safety applications if adjusted to its max. length, as shown in figure beside. If you need an adjustable lever for safety applications, use the adjustable safety lever VF LE56.   - ${ }^{(2)}$ The position switch obtained by assembling switch FX $\bullet 38-\mathrm{M} 2$ (e.g. FX 538-M2, FX 638-M2...) with actuator VF L53 will not present the same travel diagrams and actuating forces as switch FX $\bullet 53-E 0 M 2$ V9 (e.g. FX 553-E0M2V9, FX 653-E0M2V9...).   ${ }^{-14)}$ The actuator cannot be rotated to the inside because it will mechanically interfere with the switch head.						
Items with code on green background are stock items			Accessories See page 225		$\rightarrow$ The 2D/3D files are available at www.pizzato.com	

Stainless steel rollers, $\varnothing 20 \mathrm{~mm}$

VF LE31-R24 $\Theta$	VF LE51-R24 $\Theta$	VF LE52-R24 $\Theta$	VF LE54-R24 $\Theta$	VF LE55-R24 $\Theta{ }^{\text {(1) }}$	VF LE56-R24 $\Theta$	VF LE57-R24 $\Theta$

Technopolymer rollers, $\varnothing 35 \mathrm{~mm}$


Rubber rollers, $\varnothing 40$ mm


Rubber rollers, $\varnothing 50 \mathrm{~mm}$


## Protruding rubber rollers, $\varnothing 50 \mathrm{~mm}$



## Selection diagram

$\qquad$ accessory sold separately

With M12 metal connector

$\mathbf{K 4 1}$	8 poles, right


K41	8 poles, right
K42	8 poles, left
K51	5 poles, right
K52	5 poles, left



## Code structure

Attention! The feasibility of a code number does not mean the effective availability of a product. Please contact our sales office.



## Main features

- Metal housing, two conduit entries
- Protection degree IP67
- 17 contact blocks available
- 42 actuators available
- Versions with M12 connector
- Versions with gold-plated silver contacts


## Technical data

## Housing

Metal housing, baked powder coating
Two threaded conduit entries:
Protection degree:
M20x1.5 (standard)
IP67 according to EN 60529 with cable gland having equal or higher protection degree

## General data

Ambient temperature:
Max. actuation frequency:
Mechanical endurance:
Mounting position:
Safety parameters:
$B_{10 d}$ :
Mechanical interlock, not coded:
Tightening torques for installation: (1) One operation cycle means two movements, one to close and one to open contacts, as defined in
EN 60947-5-1. EN 60947-5-1.

Cable cross section (flexible copper strands)

Contact blocks 20, 21, 22, 33, 34

Contact block $5,6,7,9,10,11,12,13,14,15,16,18:$
Contact block 2:

## In conformity with standards:

IEC 60947-5-1, EN 60947-5-1, EN 60947-1, IEC 60204-1, EN 60204-1, EN ISO 14119, EN ISO 12100, IEC 60529, EN 60529, UL 508, CSA 22.2 No. 14

## Approvals:

IEC 60947-5-1, UL 508, CSA 22.2 No.14, GB14048.5-2001.

## In conformity with the requirements of:

Low Voltage Directive 2006/95/EC, Machinery Directive 2006/42/EC and EMC Directive 2004/108/EC.
Positive contact opening in conformity with standards:
IEC 60947-5-1, EN 60947-5-1.

## Installation for safety applications:

Use only switches marked with the symbol $\Theta$ aside the product code. Always connect the safety circuit to the NC contacts (normally closed contacts: 11-12, 21-22 or 31-32) as stated in standard EN 60947-5-1, encl. K, par. 2. Actuate the switch at least up to the positive opening travel shown in the travel diagrams on page 240. Operate the switch at least with the positive opening force, indicated between brackets below each article, aside the minimum force value.
§ If not expressly indicated in this chapter, for correct installation and utilization of all articles see chapter utilization requirements from page 235 to page 246.

Electrical data			Utilization category			
	Thermal current (lth):   Rated insulation voltage (Ui):   Rated impulse withstand voltage ( $\mathrm{U}_{\mathrm{imp}}$ ):   Conditional short circuit current: Protection against short circuits: Pollution degree:	10 A   500 Vac 600 Vdc   400 Vac 500 Vdc contact blocks 2, 11, 12, 20,   21, 22, 33, 34)   6 kV   4 kV (contact blocks 20, 21, 22, 33, 34)   1000 A according to EN 60947-5-1   ${ }_{3}^{\text {type aM fuse } 10 \mathrm{~A}} 500 \mathrm{~V}$   3	Alternating current: AC15 (50 60 Hz)			
			Ue (V)	250	400	500
			le (A)	6	4	1
			Ue (V)	24	125	250
			le (A)	6	1.1	0.4
	Thermal current (Ith): Rated insulation voltage (Ui): Protection against short circuits: Pollution degree:	4 A   250 Vac 300 Vdc   type gG fuse 4 A 500 V   3	Alternating current: AC15 $(50 \div 60 \mathrm{~Hz})$    Ue (V) 24 120 250   le (A) 4 4 4   Direct current: DC13     U			
			le (A)	4	1.1	0.4
			Altern	curre	AC15	60 Hz)
	Thermal current (lth):	2 A	Ue (V)	24		
$\stackrel{1}{\sim}$	Rated insulation voltage (Ui):	30 Vac 36 Vdc	le (A)	2		
$\sum^{\circ} \overline{0}$	Protection against short circuits:	type gG fuse 2 A 500 V	Direct	ent: D		
	Pollution degree:	3	Ue (V)	24		
			le (A)	2		

## Characteristics approved by IMO

Rated insulation voltage (Ui): 500 Vac
400 Vac (for contact blocks 2, 11, 12, 20, 21, 22, 33, 34)
Conventional free air thermal current (lth): 10 A
Protection against short circuits:
type aM fuse 10 A 500 V
Rated impulse withstand voltage ( $U_{\text {imp }}$ )
Protection degree of the housing: IP67
MV terminals (screw terminals)
Pollution degree 3
Utilization category: AC15
Operating voltage (Ue): $400 \mathrm{Vac}(50 \mathrm{~Hz})$
Operating current (le): 3 A
Forms of the contact element: $\mathrm{Za}, \mathrm{Zb}, \mathrm{Za}+\mathrm{Za}, \mathrm{Y}+\mathrm{Y}, \mathrm{X}+\mathrm{X}, \mathrm{Y}+\mathrm{Y}+\mathrm{X}, \mathrm{Y}+\mathrm{Y}+\mathrm{Y}, \mathrm{Y}+\mathrm{X}+\mathrm{X}$
Positive opening of contacts on contact blocks $5,6,7,9,11,13,14,16,18,20$,
$21,22,33,34$
In conformity with standards: EN 60947-1, EN 60947-5-1+ A1:2009, fundamental requirements of the Low Voltage Directive 2006/95/EC.

Please contact our technical service for the list of approved products.

## Characteristics approved by UL

Utilization categories Q300 (69 VA, 125 ... 250 Vdc)
A600 (720 VA, $120 \ldots 600 \mathrm{Vac}$ )
Data of housing type $1,4 \mathrm{X}$ "indoor use only", 12,13
For all contact blocks except 2 and 3 use 60 or $75^{\circ} \mathrm{C}$ copper ( Cu ) conductor, rigid or flexible, wire size AWG 12/14. Terminal tightening torque of 7.1 lb in ( 0.8 Nm ).
For contact blocks 2 and 3 use 60 or $75^{\circ} \mathrm{C}$ copper ( Cu ) conductor, rigid or flexible, wire size AWG 14. Terminal tightening torque of 12 lb in ( 1.4 Nm ).

In conformity with standard: UL 508, CSA 22.2 No. 14

Please contact our technical service for the list of approved products.

## Connection diagram for M12 connectors

Contact block 2   $1 \mathrm{NO}-1 \mathrm{NC}+1 \mathrm{NO}-1 \mathrm{NC}$	Contact block 5 $1 \mathrm{NO}+1 \mathrm{NC}$	Contact block 6 $1 \mathrm{NO}+1 \mathrm{NC}$	$\begin{gathered} \text { Contact block } 7 \\ 1 N O+1 N C \end{gathered}$	Contact block 9 2NC	$\begin{gathered} \text { Contact block } 10 \\ 2 \mathrm{NO} \end{gathered}$	Contact block 11 2NC	Contact block 12 2NO	Contact block 13 2NC
M12 connector, 8 poles	M12 connector, 5 poles							
Contacts Pin no.   NO $\quad 3-4$	Contacts Pin no.   NC $\quad 1-2$	Contacts Pin no   NC $\quad 1-2$	Contacts Pin no   NC 1-2	Contacts Pin no   NC $\quad 1-2$	Contacts Pin no.   NO 1-2	Contacts Pin no.   NC $\quad 1-2$	Contacts Pin no.   NO $\quad 1-2$	Contacts Pin no   NC (19) 1-2
NC 5-6	NO 3-4	NO 3-4	NO 3-4	NC 3-4	NO 3-4	NC 3-4	NO 3-4	NC (2) ${ }^{\circ} \mathrm{3}-4$
NC 7-8	ground 5							
NO 1-2								


Contact block 14 2NC	$\begin{aligned} & \text { Contact block } 15 \\ & 2 \text { NO } \end{aligned}$	$\begin{aligned} & \text { Contact block } 16 \\ & 2 N C \end{aligned}$	$\begin{gathered} \text { Contact block } 18 \\ 1 \mathrm{NO}+1 \mathrm{NC} \end{gathered}$	$\begin{gathered} \text { Contact block } 20 \\ 2 N C+1 N O \end{gathered}$	Contact block 21 3NC	Contact block 22   $1 \mathrm{NC}+2 \mathrm{NO}$	$\begin{gathered} \text { Contact block } 33 \\ 1 \mathrm{NC}+1 \mathrm{NO} \end{gathered}$	Contact block 34 2NC
M12 connector, 5 poles	M12 connector, 8 poles	M12 connector, 8 poles	M12 connector, 8 poles	M12 connector, 5 poles	M12 connector, 5 poles			
Contacts Pin no. NC (19) $\quad 1-2$	Contacts Pin no. $N O\left(1^{\circ}\right) \quad 1-2$	Contacts Pin no.   $N C$, lever at the right $1-2$	$\begin{array}{cc} \hline \text { Contacts } & \text { Pin no. } \\ \text { NC } & 1-2 \end{array}$	$\begin{array}{cc} \hline \text { Contacts } & \text { Pin no. } \\ \text { NC } & 3-4 \end{array}$	$\begin{array}{cc} \hline \text { Contacts } & \text { Pin no. } \\ \text { NC } & 3-4 \end{array}$	$\begin{array}{cc} \text { Contacts } & \text { Pin no. } \\ \text { NC } & 3-4 \end{array}$	$\begin{array}{cc} \text { Contacts } & \text { Pin no. } \\ \text { NC } & 1-2 \end{array}$	$\begin{array}{cc} \hline \text { Contacts } & \text { Pin no. } \\ \text { NC } & 1-2 \end{array}$
NC (29) 3-4	NO (29) 3-4	NC, lever to the left 3-4	NO 3-4	NC 5-6	NC 5-6	NO 5-6	NO 3-4	NC 3-4
ground 5	ground 5	ground 5	ground 5	NO 7-8	NC 7-8	NO 7-8	ground 5	ground 5
				ground 1	ground 1	ground 1		

## Contact block E1 PNP

M12 connector, 5 poles

Contacts	Pin no.
+	1
-	3
NC	2
NO	4
ground	5



Contact blocks		With stainless steel roller on request	With external ru With stainless ster	ber gasket   eel roller on request		With external rubber gasket	
5	R		FZ 505-M2 $\Theta$ 1 ${ }^{1 \mathrm{~N}+1 \mathrm{NC}}$	FZ 5A5-M2	$1 \mathrm{NO}+1 \mathrm{NC}$	FZ 507-M2 $\Theta$ 1 ${ }^{\text {NO+1NC }}$	FZ 5A7-M2 $\Theta$ - ${ }^{1 N O+1 N C}$
6	$\square$	FZ 605-M2 $\Theta$ 1 ${ }^{\text {NO}+1 \mathrm{NC}}$	FZ 6A5-M2	$1 \mathrm{NO}+1 \mathrm{NC}$	FZ 607-M2 $\Theta$ 1 ${ }^{1 N+1 N C}$	FZ 6A7-M2 $\Theta$ 1 ${ }^{1 N 0+1 N C}$	
7	L0	FZ 705-M2 $\Theta$ 1 ${ }^{\text {NO}+1 \mathrm{NC}}$	FZ 7A5-M2	( $1 \mathrm{NO}+1 \mathrm{NC}$	FZ 707-M2 $\Theta$ 1 ${ }^{\text {NO}+1 \mathrm{NC}}$	FZ 7A7-M2 $\Theta$ - ${ }^{\text {N }}$ + +1 NC	
9	$\square$	FZ 905-M2 $\Theta$ 2NC	FZ 9A5-M2	$\bigcirc$ 2nc	FZ 907-M2 $\Theta$ 2NC	FZ 9A7-M2 $\Theta$ 2NC	
10	$\square$	FZ 1005-M2 2NO	FZ 10A5-M2	2 No	FZ 1007-M2 2NO	FZ 10A7-M2 2NO	
11	R	FZ 1105-M2 $\oplus$ 2NC	FZ 11A5-M2	( 2 NC	FZ 1107-M2 $\Theta$ 2NC	FZ 11A7-M2 $\Theta$ 2NC	
12	R	FZ 1205-M2 2NO	FZ 12A5-M2	2 No	FZ 1207-M2 2NO	FZ 12A7-M2 2NO	
13	LV	FZ 1305-M2 $\Theta$ 2NC	FZ 13A5-M2	(-2NC	FZ 1307-M2 $\Theta$ 2NC	FZ 13A7-M2 $\Theta$ 2NC	
14	LS	FZ 1405-M2 $\Theta$ 2NC	FZ 14A5-M2	- 2 NC	FZ 1407-M2 $\Theta$ 2NC	FZ 14A7-M2 $\Theta$ 2NC	
15	LS	FZ 1505-M2 2NO	FZ 15A5-M2	2 No	FZ 1507-M2 2NO	FZ 15A7-M2 2No	
18	LA	FZ 1805-M2 $\Theta$ 1 ${ }^{\text {NO}+1 N C}$	FZ 18A5-M2	( $1 \mathrm{NO}+1 \mathrm{NC}$	FZ 1807-M2 $\Theta$ - ${ }^{1 N O+1 N C}$	FZ 18A7-M2 $\Theta$ - ${ }^{\text {N }}$ O+1NC	
20	$\square$	FZ 2005-M2 $\Theta$ 1 ${ }^{\text {NO}+2 N C}$	FZ 20A5-M2	$\oplus 1 \mathrm{NO}+2 \mathrm{NC}$	FZ 2007-M2 $\Theta$ 1 ${ }^{\text {NO}+2 N C}$	FZ 20A7-M2 $\Theta$ 1NO+2NC	
21	$\square$	FZ 2105-M2 $\Theta$ 3NC	FZ 21A5-M2	- 3 NC	FZ 2107-M2 $\Theta$ 3NC	FZ 21A7-M2 $\Theta$ 3NC	
22	$\square$	FZ 2205-M2 $\Theta$ 2NO+1NC	FZ 22A5-M2	( $2 \mathrm{NO}+1 \mathrm{NC}$	FZ 2207-M2 $\Theta$ 2NO+1NC	FZ 22A7-M2 $\Theta$ 2NO+1NC	
2	R	FZ 205-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC})$	FZ 2A5-M2	$2 \times(1 \mathrm{NO}-1 \mathrm{NC)}$	FZ 207-M2 2x(1No-1NC)	FZ 2A7-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC)}$	
E1	-	FZ E105-M2 1NO-1NC	FZ E1A5-M2	$1 \mathrm{No-1NC}$	FZ E107-M2 1NO-1NC	FZ E1A7-M2 1NO-1NC	
Max. speed		page 239 - type 3	page 2	9 - type 3	page 239 - type 3	page 239 - type 3	
Min. force		$6 \mathrm{~N}(25 \mathrm{~N}$ ¢)	4.3 N	$25 \mathrm{~N} \oplus$ )	$4 \mathrm{~N}(25 \mathrm{~N}$ ¢)	$3 \mathrm{~N}(25 \mathrm{~N}$ ¢)	
Travel diagrams		page 240 - group 2	page 2	- group 2	page 240 - group 3	page 240 - group 3	

All measures in the drawings are in mm



All measures in the drawings are in mm


Contact blocks				Round rod, $\varnothing 3$	stainless steel	Other rollers available. See on page 106	Other rollers available. See on page		
5	R			FZ 534-M2	$1 \mathrm{NO}+1 \mathrm{NC}$	FZ 550-M2	$1 \mathrm{NO}+1 \mathrm{NC}$	FZ 551-M2 $\Theta$ 1NO+1NC	FZ 552-M2 $\Theta$ 1NO+1NC
6	L	FZ 634-M2	$1 \mathrm{NO}+1 \mathrm{NC}$	FZ 650-M2	$1 \mathrm{NO}+1 \mathrm{NC}$	FZ 651-M2 $\Theta$ 1NO+1NC	FZ 652-M2 $\Theta$ 1NO+1NC		
7	LO	FZ 734-M2	$1 \mathrm{NO}+1 \mathrm{NC}$	FZ 750-M2	$1 \mathrm{NO}+1 \mathrm{NC}$	FZ 751-M2 $\Theta$ 1NO+1NC	FZ 752-M2 $\Theta$ 1NO+1NC		
9	L	FZ 934-M2	2NC	FZ 950-M2	2NC	FZ 951-M2 $\Theta$ 2NC	FZ 952-M2 $\Theta$ 2NC		
10	$\square$	FZ 1034-M2	2 NO	FZ 1050-M2	2NO	FZ 1051-M2 2NO	FZ 1052-M2 2NO		
11	R	FZ 1134-M2	2NC	FZ 1150-M2	2NC	FZ 1151-M2 $\Theta$ 2NC	FZ 1152-M2 $\Theta$ 2NC		
12	R	FZ 1234-M2	2 NO	FZ 1250-M2	2NO	FZ 1251-M2 2NO	FZ 1252-M2 2NO		
13	LV	FZ 1334-M2	2 NC	FZ 1350-M2	2NC	FZ 1351-M2 $\Theta$ 2NC	FZ 1352-M2 $\Theta$ 2NC		
14	LS	FZ 1434-M2	2NC	FZ 1450-M2	2NC	FZ 1451-M2 $\Theta$ 2NC	FZ 1452-M2 $\Theta$ 2NC		
15	LS	FZ 1534-M2	2NO	FZ 1550-M2	2NO	FZ 1551-M2 2NO	FZ 1552-M2 2NO		
16	$\square$	FZ 1634-M2	2NC	FZ 1650-M2	2NC	FZ 1651-M2 $\Theta$ 2NC	FZ 1652-M2 $\Theta$ 2NC		
18	LA	FZ 1834-M2	$1 \mathrm{NO}+1 \mathrm{NC}$	FZ 1850-M2	1NO+1NC	FZ 1851-M2 $\Theta$ 1NO+1NC	FZ 1852-M2 $\Theta$ 1NO+1NC		
20	L	FZ 2034-M2	$1 \mathrm{NO}+2 \mathrm{NC}$	FZ 2050-M2	$1 \mathrm{NO}+2 \mathrm{NC}$	FZ 2051-M2 $\Theta 1$ NO+2NC	FZ 2052-M2 $\Theta 1$ NO+2NC		
21	L	FZ 2134-M2	3NC	FZ 2150-M2	3NC	FZ 2151-M2 $\Theta 3 N C$	FZ 2152-M2 $\Theta 3 \mathrm{NC}$		
22	L	FZ 2234-M2	$2 \mathrm{NO}+1 \mathrm{NC}$	FZ 2250-M2	2NO+1NC	FZ 2251-M2 $\Theta$ 2NO+1NC	FZ 2252-M2 $\Theta$ 2NO+1NC		
2	R	FZ 234-M2	2x(1NO-1NC)	FZ 250-M2	2x(1NO-1NC)	FZ 251-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC}$ )	FZ 252-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC}$ )		
E1	同	FZ E134-M2	1NO-1NC	FZ E150-M2	1NO-1NC	FZ E151-M2 1NO-1NC	FZ E152-M2 1NO-1NC		
Max. speed		$1.5 \mathrm{~m} / \mathrm{s}$		$1.5 \mathrm{~m} / \mathrm{s}$		page 239 - type 1	page 239 - type 1		
Min. force		0.06 Nm		0.06 Nm		$0.06 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.06 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$		
Travel diagrams		page 240 - group 5		page 240 - group 5		page 240 - group 5	page 240 - group 5		

All measures in the drawings are in mm

		Porcelain roller	Other rollers available. See on page 106	er rollers available. See on page 106	Other rollers available. See on page 106
$\begin{aligned} & \text { Contact type: } \\ & \begin{array}{\|l} \hline \mathbf{R} \\ \hline \mathbf{L} \end{array}=\text { snap action } \\ & \hline \mathbf{L} \text { = slow action } \\ & \hline \mathbf{L O}=\text { slow action } \\ & \text { overlapped } \\ & \mathbf{L S} \text { = slow action } \\ & \text { shifted } \\ & \mathbf{L V}=\text { slow action } \\ & \text { shiftec and } \\ & \text { spaced } \end{aligned}$					
5	R	FZ 553-E0M2V9 $\Theta$ 1 ${ }^{\text {NO+1NC }}$	FZ 554-M2 $\Theta$ 1NO+1NC	FZ 555-M2 $\ominus^{(1)} 1 \mathrm{NO}+1 \mathrm{NC}$	FZ 556-M2 $\Theta$ 1NO+1NC
6	$\square$	FZ 653-E0M2V9 $\odot \underbrace{1 N O+1 N C}$	FZ 654-M2 $\Theta$ ( ${ }^{\text {NO}+1 N C}$	FZ 655-M2 $\Theta^{(1)}{ }^{(1 N O+1 N C}$	FZ 656-M2 $\Theta$ ( ${ }^{\text {NO}+1 N C}$
7	L0	FZ 753-EOM2V9 $\Theta$ - 1 NO+1NC	FZ 754-M2 $\Theta$ - ${ }^{\text {NOO}+1 N C}$	FZ 755-M2 $\Theta^{(1)} 1 \mathrm{NO}+1 \mathrm{NC}$	FZ 756-M2 $\Theta$ - ${ }^{\text {NO}}+1 \mathrm{NC}$
9	$\square$	FZ 953-E0M2V9 $\Theta$ 2NC	FZ 954-M2 $\Theta$ 2NC	FZ 955-M2 $\Theta^{(1)}$ 2NC	FZ 956-M2 $\Theta$ 2NC
10	$\square$	FZ 1053-EOM2V9 2NO	FZ 1054-M2 2NO	FZ 1055-M2 2NO	FZ 1056-M2 2NO
11	R		FZ 1154-M2 $\Theta$ 2NC	FZ 1155-M2 $\Theta^{(1)} 2 \mathrm{NC}$	FZ 1156-M2 $\Theta$ 2NC
12	R	FZ 1253-EOM2V9	FZ 1254-M2 2NO	FZ 1255-M2 2NO	FZ 1256-M2 2NO
13	LV	FZ 1353-EOM2V9 $\Theta$ 2NC	FZ 1354-M2 $\Theta$ 2NC	FZ 1355-M2 $\Theta$ (1) ${ }^{\text {2NC }}$	FZ 1356-M2 $\Theta$ 2NC
14	LS	FZ 1453-EOM2V9 $\Theta$ 2NC	FZ 1454-M2 $\Theta$ 2NC	FZ 1455-M2 $\Theta^{(1)}$ 2NC	FZ 1456-M2 $\Theta$ 2NC
15	LS	FZ 1553-EOM2V9 2NO	FZ 1554-M2	FZ 1555-M2 2 NO	FZ 1556-M2 2NO
16	L		FZ 1654-M2 $\Theta$ 2NC	FZ 1655-M2 $\Theta^{(1)} 2 \mathrm{NC}$	FZ 1656-M2 $\Theta$ 2NC
18	LA	FZ 1853-EOM 2 V9 $\Theta$ - $1 \mathrm{NO}+1 \mathrm{NC}$	FZ 1854-M2 $\Theta$ 1NO+1NC	FZ 1855-M2 $\Theta^{(1)}{ }^{(1 N O+1 N C}$	FZ 1856-M2 $\Theta$ 1 ${ }^{\text {NO}+1 N C}$
20	$\square$	FZ 2053-EOM2V9 $\odot$ 1NO+2NC	FZ 2054-M2 $\Theta$ 1NO+2NC	FZ 2055-M2 $\Theta^{(1)} 1 \mathrm{NO}+2 \mathrm{NC}$	FZ 2056-M2 $\Theta 1$ 1NO+2NC
21	$\square$	FZ 2153-EOM2V9 $\Theta$ 3NC	FZ 2154-M2 $\Theta$ 3NC	FZ 2155-M2 $\Theta^{(1)} 3 \mathrm{NC}$	FZ 2156-M2 $\Theta$ 3NC
22	$\square$	FZ 2253-EOM2V9 $\odot 2$ 2NO+1NC	FZ 2254-M2 $\odot 2{ }^{\text {NO}+1 N C}$	FZ 2255-M2 $\Theta^{(1)} 2 \mathrm{NO}^{(1 N \mathrm{NC}}$	FZ 2256-M2 $\odot 2{ }^{2 N O+1 N C}$
2	R	FZ 253-E0M2 2x(1NO-1NC)	FZ 254-M2 2x(1NO-1NC)	FZ 255-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC}$	FZ 256-M2 2x(1NO-1NC)
E1	因	FZ E153-E0M2V9 1NO-1NC	FZ E154-M2 1NO-1NC	FZ E155-M2 1NO-1NC	FZ E156-M2 1NO-1NC
Max. speed		$0.5 \mathrm{~m} / \mathrm{s}$	page 239 - type 1	page 239 - type 1	page 239 - type 1
Min. force		$0.03 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.06 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.06 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.06 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$
Travel diagrams		page 240 - group 6	page 240 - group 5	page 240 - group 5	page 240 - group 5


${ }^{(1)}$ Positive opening only with actuator set to max. See page 105.
All measures in the drawings are in mm


Pizzato Elettrica has developed a reset device code W3 to make perfectly simultaneous the actuator and the contact block tripping. The new device is a block inserted between the switch body and the head, and could be rotated independently from this last one. This new device has following advantages:

- The reset device can be integrated into almost all standard actuator heads
- Contact bllocks with snap action are no more necessary because the tripping movement is made by the reset device itself
-The reset device can be rotated independently from the head for maximum flexibility during installation
- Two driving forces: standard and increased for applications with vibrations
- Mechanical endurance: 1 million operating cycles.

Contact type: $\begin{aligned} & \hline \mathbf{R} \\ & \text { = snap action } \\ & \hline \mathbf{L} \end{aligned} \text { = slow action }$		With stainless steel roller on request	With stainless steel roller on request	
Contact blocks				
6 L	FZ 601-W3M2 $\Theta$ 1NO+1NC	FZ 602-W3M2 $\Theta$ 1NO+1NC	FZ 605-W3M2 $\Theta$ 1NO+1NC	FZ 607-W3M2 $\Theta$ 1NO+1NC
9 L	FZ 901-W3M2 $\Theta$ 2NC	FZ 902-W3M2 $\Theta$ 2NC	FZ 905-W3M2 $\Theta$ 2NC	FZ 907-W3M2 $\Theta$ 2NC
10 L	FZ 1001-W3M2 2NO	FZ 1002-W3M2 2NO	FZ 1005-W3M2 2NO	FZ 1007-W3M2 2NO
20 L	FZ 2001-W3M2 $\Theta$ 1NO+2NC	FZ 2002-W3M2 $\Theta$ 1NO+2NC	FZ 2005-W3M2 $\Theta$ 1NO+2NC	FZ 2007-W3M2 $\Theta$ 1NO+2NC
21 L	FZ 2101-W3M2 $\Theta 3 \mathrm{NC}$	FZ 2102-W3M2 $\Theta$ 3NC	FZ 2105-W3M2 $\Theta$ 3NC	FZ 2107-W3M2 $\Theta$ 3NC
22 L	FZ 2201-W3M2 $\Theta 2 \mathrm{NO}+1 \mathrm{NC}$	FZ 2202-W3M2 $\Theta 2 \mathrm{NO}+1 \mathrm{NC}$	FZ 2205-W3M2 $\Theta$ 2NO+1NC	FZ 2207-W3M2 $\Theta$ 2NO+1NC
2 R	FZ 201-W3M2 2NO+2NC	FZ 202-W3M2 2NO+2NC	FZ 205-W3M2 2NO+2NC	FZ 207-W3M2 2NO+2NC
Max. speed	page 239 - type 4	page 239 - type 3	page 239 - type 3	page 239 - type 3
Min. force	$4.5 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$4 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$4 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$2.5 \mathrm{~N}(25 \mathrm{~N} \Theta)$
Travel diagrams	page 241 - group 1	page 241 - group 2	page 241 - group 2	page 241 - group 3



All measures in the drawings are in mm


All measures in the drawings are in mm

## Increased actuating force



The switch can be delivered with increased actuating force (option W4). Ideal for applications with vibrations.


Actuators	Min. force
$01,14,15,16$	7 N
02,05	6 N
07	3.5 N
$30 \ldots 57$	0.08 Nm

## Position switches with revolving lever without actuator

Contact type:			With manual reset knob
$\mathbf{R}$ $=$ snap action   $\mathbf{L}$ $=$ slow action   $\mathbf{L O}$ slow action   overlapped			
5	R	FZ 538-M2 $\Theta$ 1NO+1NC	
6	L	FZ 638-M2 $\quad \rightarrow$ 1NO+1NC	FZ 638-W3M2 $\Theta$ 1NO+1NC
7	L0	FZ 738-M2 $\Theta$ 1NO+1NC	
9	L	FZ 938-M2 $\Theta$ 2NC	FZ 938-W3M2 $\Theta$ 2NC
10	L	FZ 1038-M2 2NO	FZ 1038-W3M2 2NO
11	R	FZ 1138-M2 $\Theta$ 2NC	
12	R	FZ 1238-M2 2NO	
13	LV	FZ 1338-M2 $\Theta$ 2NC	
14	LS	FZ 1438-M2 $\Theta$ 2NC	
15	LS	FZ 1538-M2 2NO	
16	L	FZ 1638-M2 $\Theta$ 2NC	
18	LA	FZ 1838-M2 $\Theta$ 1NO+1NC	
20	L	FZ 2038-M2 $\Theta$ 1NO+2NC	FZ 2038-W3M2 $\Theta$ 1NO+2NC
21	L	FZ 2138-M2 $\Theta 3 N \mathrm{C}$	FZ 2138-W3M2 $\Theta 3 \mathrm{NC}$
22	$\square$	FZ 2238-M2 $\Theta$ 2NO+1NC	FZ 2238-W3M2 $\Theta$ 2NO+1NC
2	R	FZ 238-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC})$	FZ 238-W3M2 2NO+2NC
E1	同	FZ E138-M2 1NO-1NC	
Min. force		$0.06 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta$ )	$0.07 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$
Travel diagrams		page 240 - group 5	page 241 - group 4

All measures in the drawings are in mm

## Loose actuators

## IMPORTANT

For safety applications: join only switches and actuators marked with symbol $\Theta$ aside the product code.
For more information about safety applications see details on page 235.

IMPORTANT: These loose actuators can be used with items of series FR, FM, FX, FZ and FK only.


## Special loose actuators

IMPORTANT: These loose actuators can be used with items of series FR, FM, FX, FZ and FK only.
Stainless steel rollers, $\varnothing 20$ mm

VF LE31-R24 $\Theta$	VF LE51-R24 $\Theta$	VF LE52-R24 $\Theta$	VF LE54-R24 $\Theta$	VF LE55-R24 $\Theta{ }^{\text {(1) }}$	VF LE56-R24 $\Theta$	VF LE57-R24 $\Theta$

Technopolymer rollers, $\varnothing 35$ mm
VF LE31-R25 $\Theta$ (4) VF LE51-R25 $\Theta$ (4) $\operatorname{VF}$

Rubber rollers, $\varnothing 40 \mathrm{~mm}$

VF LE31-R5 $\Theta$ (4)	VF LE51-R5 $\underbrace{(4)}$	VF LE52-R5	VF LE54-R5 $\Theta$ (4)	VF LE55-R5 $\Theta$ (1)	VF LE56-R5 $\Theta$	VF LE57-R5 $\Theta$ (4)

Rubber rollers, $\varnothing 50 \mathrm{~mm}$


## Protruding rubber rollers, $\varnothing 50 \mathrm{~mm}$



## Selection diagram



CONDUIT ENTRY

product options
accessory sold separately



Code structure
Attention! The feasibility of a code number does not mean the effective availability of a product. Please contact our sales office. article options options FK $302-\mathrm{W} 3 \mathrm{XG} 1 \mathrm{~K} 24 \mathrm{R} 23 \mathrm{~T} 6$


External metallic parts
zinc-plated steel (standard)
X
stainless steel

## Contact type

silver contacts (standard) silver contacts with
G $1 \mu \mathrm{~m}$ gold coating (not for contact block 2)

Ambient temperature
$-25^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$ (standard)
T6
$-40^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$

Pre-installed cable glands
without cable gland (standard)
K24 cable gland for cables $\varnothing 5 \ldots \varnothing 10 \mathrm{~mm}$
K28 cable gland for cables $\varnothing 3 \ldots \varnothing 7$ mm
Please contact our technical service for the complete list of possible combinations.

Threaded conduit entry Rollers
M1 M16x1.5 (standard) PG 11

R28
standard roller
stainless steel, $\varnothing 12 \mathrm{~mm}$
(for actuators A4, 15) stainless steel, $\varnothing 14 \mathrm{~mm}$
R23 (for actuators A2, 02, A5, 05, 30, $31,51,52,54,55,56,57)$ stainless steel, Ø 20 mm
R24 (for actuators $30,31,51,52,54$, $55,56,57)$
technopolymer, Ø 35 mm
R25 (for actuators 30, 31, 51, 52, 54, $55,56,57)$
rubber, Ø 40 mm
R5 (for actuators $30,31,51,52,54$, $55,56,57)$ rubber, Ø 50 mm
R26
(for actuators 51, 52, 54, 55,56, 57)

R27 rubber, protruding, $\varnothing 50 \mathrm{~mm}$ (for


## Main features

-Technopolymer housing, one conduit entry

- Protection degree IP67
- 3 contact blocks available
- 46 actuators available
- Versions with stainless steel external parts
- Versions with gold-plated silver contacts


## Technical data

## Housing

Housing made of fiber glass reinforced technopolymer, self-extinguishing, shock-proof and with double insulation:
One threaded conduit entry:
Protection degree:
M16x1.5 (standard)
IP67 according to EN 60529 with cable gland having equal or higher protection degree

## General data

Ambient temperature:
Max. actuation frequency:
Mechanical endurance:
Mounting position:
Safety parameters:
$\mathrm{B}_{10 \mathrm{~d}}$ :
Mechanical interlock, not coded:
$-25^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$
3600 operating cycles ${ }^{1} /$ hour
20 million operating cycles ${ }^{1}$ any

Tightening torques for installation: type 1 according to EN ISO 14119 see pages 235-246 (1) One operation cycle means two movements, one to close and one to open contacts, as defined in EN 60947-5-1.

Cable cross section (flexible copper strands)
Contact block 33, 34:

$\min$.	$1 \times 0.34 \mathrm{~mm}^{2}$	$(1 \times$ AWG 22)
$\max$.	$2 \times 1.5 \mathrm{~mm}^{2}$	$(2 \times A W G 16)$
$\min$.	$1 \times 0.5 \mathrm{~mm}^{2}$	$(1 \times$ AWG 20)
$\operatorname{max.}$	$2 \times 1.5 \mathrm{~mm}^{2}$	$(2 \times$ AWG 16)

## In conformity with standards:

IEC 60947-5-1, EN 60947-5-1, EN 60947-1, IEC 60204-1, EN 60204-1, EN ISO 14119, EN ISO 12100, IEC 60529, EN 60529, UL 508, CSA 22.2 No. 14

## Approvals:

IEC 60947-5-1, UL 508, CSA 22.2 No.14, GB14048.5-2001.

## In conformity with the requirements of:

Low Voltage Directive 2006/95/EC, Machinery Directive 2006/42/EC and EMC Directive 2004/108/EC.
Positive contact opening in conformity with standards:
IEC 60947-5-1, EN 60947-5-1.

IMQ approval:	
EG610	
UL approval:	
C131787	
ECC approval:	
EAC approval:	RU C-IT ДM94.B.01024

Installation for safety applications:
Use only switches marked with the symbol $\Theta$ aside the product code. Always connect the safety circuit to the NC contacts (normally closed contacts: 11-12, 21-22 or 31-32) as stated in standard EN 60947-5-1, encl. K, par. 2. Actuate the switch at least up to the positive opening travel shown in the travel diagrams on page 240 . Operate the switch at least with the positive opening force, indicated between brackets below each article, aside the minimum force value.
§ If not expressly indicated in this chapter, for correct installation and utilization of all articles see chapter utilization requirements from page 235 to page 246.

Electrical data			Utilization category			
	Thermal current (lth):   Rated insulation voltage (Ui):   Rated impulse withstand voltage ( $\mathrm{U}_{\text {imp }}$ ):   Conditional short circuit current:   Protection against short circuits:   Pollution degree:	```10 A 500 Vac 600 Vdc 400 Vac 500 Vdc (contact blocks 33, 34) 6 kV 4 kV (contact block 33, 34) 1000 A according to EN 60947-5-1 type aM fuse 10 A 500 V 3```	Alternating current: AC15 ( $50 \div 60 \mathrm{~Hz}$ )			
			Ue (V)	250	400	500
			le (A)	6	4	1
			Direct	ent: D		
			$\mathrm{Ue}(\mathrm{V})$	24	125	250
			le (A)	6	1.1	0.4

Characteristics approved by IMO<br>Rated insulation voltage (Ui): 500 Vac<br>400 Vac (for contact blocks 33, 34)<br>Conventional free air thermal current (lth): 10 A<br>Protection against short circuits:<br>type aM fuse 10 A 500 V<br>Rated impulse withstand voltage $\left(\mathrm{U}_{\mathrm{imp}}\right)$ : 6 kV<br>4 kV (for contact blocks 33, 34<br>Protection degree of the housing: IP67<br>MV terminals (screw terminals)<br>Pollution degree 3<br>Utilization category: AC15<br>Operating voltage (Ue): $400 \mathrm{Vac}(50 \mathrm{~Hz})$<br>Operating current (le): 3 A<br>Forms of the contact element: $Z b, Y+Y$<br>Positive opening of contacts on contact blocks 33, 34<br>In conformity with standards: EN 60947-1, EN 60947-5-1 + A1:2009, fundamental requirements of the Low Voltage Directive 2006/95/EC.<br>Please contact our technical service for the list of approved products.

## Characteristics approved by UL

Utilization categories Q300 (69 VA, 125 ... 250 Vdc)
A600 ( $720 \mathrm{VA}, 120 \ldots 600 \mathrm{Vac}$ )
Data of housing type $1,4 \mathrm{X}$ "indoor use only", 12, 13
For all contact blocks except 2 and 3 use 60 or $75^{\circ} \mathrm{C}$ copper ( Cu ) conductor, rigid or flexible, wire size AWG 12/14. Terminal tightening torque of 7.1 lb in (0.8 Nm).

For contact blocks 2 and 3 use 60 or $75^{\circ} \mathrm{C}$ copper ( Cu ) conductor, rigid or flexible, wire size AWG 14. Terminal tightening torque of 12 lb in (1.4 Nm).

In conformity with standard: UL 508, CSA 22.2 No. 14

Please contact our technical service for the list of approved products.

		With stainless steel roller on request	With external rubber gasket	With external rubber gasket
Contact type:$\begin{array}{\|l\|l} \hline \mathbf{R} & \text { = snap action } \\ \hline \mathbf{L} & \text { = slow action } \end{array}$			With stainless steel roller on request	With $\varnothing 12 \mathrm{~mm}$ stainless steel roller on request
$3 \quad \mathbf{R}$	FK 301-M1 1NO-1NC	FK 302-M1 1NO-1NC	FK 3A2-M1 1NO-1NC	FK 3A4-M1 1NO-1NC
33 L	FK 3301-M1 $\Theta$ 1NO+1NC	FK 3302-M1 $\Theta$ 1NO+1NC	FK 33A2-M1 $\Theta$ 1NO+1NC	FK 33A4-M1 $\Theta$ 1NO+1NC
34 L	FK 3401-M1 $\Theta$ 2NC	FK 3402-M1 $\Theta$ 2NC	FK 34A2-M1 $\Theta$ 2NC	FK 34A4-M1 $\Theta$ 2NC
Max. speed	page 239 - type 4	page 239 - type 3	page 239 - type 3	page 239 - type 5
Min. force	$5 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$4 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$4.3 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$4.3 \mathrm{~N}(25 \mathrm{~N} \Theta)$
Travel diagrams	page 240-group 1	page 240-group 2	page 240 - group 2	page 240-group 1



	With external rubber gasket	Fixed only by threaded head in vertical position		
Contact blocks				
$3 \quad \mathrm{R}$	FK 308-M1 1NO-1NC	FK 310-M1 1NO-1NC	FK 312-M1 1NO-1NC	FK 313-M1 1NO-1NC
33 L	FK 3308-M1 $\Theta$ 1NO+1NC	FK 3310-M1 $\Theta$ 1NO+1NC	FK 3312-M1 $\Theta$ 1NO+1NC	FK 3313-M1 $\Theta$ 1NO+1NC
$34 \quad \square$	FK 3408-M1 $\Theta$ 2NC	FK 3410-M1 $\Theta$ 2NC	FK 3412-M1 $\Theta$ 2NC	FK 3413-M1 $\Theta$ 2NC
Max. speed	page 239 - type 4	page 239 - type 4	page 239 - type 4	page 239 - type 2
Min. force	$5 \mathrm{~N}(25 \mathrm{~N} \Theta)$			
Travel diagrams	page 240 - group 1	page 240-group 1	page 240 - group 1	page 240 - group 1

All measures in the drawings are in mm

[^5]| Contact type: $\begin{array}{\|l\|l} \hline \mathbf{R} & =\text { snap action } \\ \mathbf{L} & \text { s slow action } \end{array}$ |  | Roller, Ø 11 mm, technopolymer | Roller, Ø 12 mm , stainless steel |  |
| :---: | :---: | :---: | :---: | :---: |
| Contact blocks |  |  |  |  |
| $3 \quad \mathbf{R}$ | FK 314-M1 1NO-1NC | FK 315-M1 1NO-1NC | FK 315-M1R28 1NO-1NC | FK 316-M1 1NO-1NC |
| 33 L | FK 3314-M1 $\Theta$ 1NO+1NC | FK 3315-M1 $\Theta$ 1NO+1NC | FK 3315-M1R28 $\Theta$ 1NO+1NC | FK 3316-M1 $\Theta$ 1NO+1NC |
| $34 \square$ | FK 3414-M1 $\Theta$ 2NC | FK 3415-M1 $\Theta$ 2NC | FK 3415-M1R28 $\Theta$ 2NC | FK 3416-M1 $\Theta$ 2NC |
| Max. speed | page 239 - type 4 | page 239 - type 2 | page 239 - type 2 | page 239 -type 2 |
| Min. force | $6 \mathrm{~N}(25 \mathrm{~N} \Theta)$ | $5 \mathrm{~N}(25 \mathrm{~N} \Theta)$ | $5 \mathrm{~N}(25 \mathrm{~N} \Theta)$ | $5 \mathrm{~N}(25 \mathrm{~N} \Theta)$ |
| Travel diagrams | page 240 - group 1 |


Fixed only by threaded head in verti-
cal position

With external rubber gasket


All measures in the drawings are in mm


	Other rollers available. See on page 116			
Contact blocks				
3 R	FK 354-M1 1NO-1NC	FK 355-M1 1NO-1NC	FK 356-M1 1NO-1NC	FK 357-M1 1NO-1NC
33 L	FK 3354-M1 $\Theta$ 1NO+1NC	FK 3355-M1 $\underbrace{\text { (1) }} 1 \mathrm{NO}+1 \mathrm{NC}$	FK 3356-M1 $\Theta$ 1NO+1NC	FK 3357-M1 $\Theta$ 1NO+1NC
$34 \square$	FK 3454-M1 $\Theta$ 2NC	FK 3455-M1 $\Theta{ }^{\text {(1) }} 2 \mathrm{NC}$	FK 3456-M1 $\Theta$ 2NC	FK 3457-M1 $\Theta$ 2NC
Max. speed	page 239 - type 1	page 239 - type 1	page 239 -type 1	page 239 - type 1
Min. force	$0.05 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.05 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.05 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta$ )	$0.05 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$
Travel diagrams	page 240 - group 5			


${ }^{(1)}$ Positive opening only with actuator set to max. See page 115.
All measures in the drawings are in mm
Accessories See page 225


Pizzato Elettrica has developed a reset device code W3 to make perfectly simultaneous the actuator and the contact block tripping. The new device is a block inserted between the switch body and the head, and could be rotated independently from this last one. This new device has following advantages:

- The reset device can be integrated into almost all standard actuator heads
- Contact bllocks with snap action are no more necessary because the tripping movement is made by the reset device itself
- The reset device can be rotated independently from the head for maximum flexibility during installation
- Two driving forces: standard and increased for applications with vibrations
- Mechanical endurance: 1 million operating cycles.



	Other rollers available. See on page 116			
Contact blocks				
$33 \quad$ L	FK 3352-W3M1 $\Theta$ 1NO+1NC	FK 3354-W3M1 $\Theta$ 1NO+1NC	FK 3356-W3M1 $\Theta$ 1NO+1NC	FK 3357-W3M1 $\Theta$ 1NO+1NC
$34 \quad$ L	FK 3452-W3M1 $\Theta$ 2NC	FK 3454-W3M1 $\Theta$ 2NC	FK 3456-W3M1 $\Theta$ 2NC	FK 3457-W3M1 $\Theta$ 2NC
Max. speed	page 239 - type 1			
Min. force	$0.07 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$			
Travel diagrams	page 241 - group 4			

All measures in the drawings are in mm

## Position switches with revolving lever without actuator

Contact type: $\begin{array}{\|l\|l} \hline \mathbf{R} & =\text { snap action } \\ \hline \mathbf{L} & \text { = slow action } \end{array}$		With manual reset knob
Contact blocks		
$3 \quad \mathrm{R}$	FK 338-M1 1NO-1NC	
33 L	FK 3338-M1 $\Theta$ 1NO+1NC	FK 3338-W3M1 $\Theta$ 1NO+1NC
34 L	FK 3438-M1 $\Theta$ 2NC	FK 3438-W3M1 $\Theta$ 2NC
Min. force	$0.05 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.07 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$
Travel diagrams	page 240 - group 5	page 241 - group 4

## IMPORTANT

For safety applications: join only switches and actuators marked with symbol $\Theta$ aside the product code.
For more information about safety applications see details on page 235.

## Increased actuating force



The switch can be delivered with increased actuating force (option W4). Ideal for applications with vibrations.

Actuators	Min. force
$01,14,15,16$	7 N
02,05	6 N
07	3.5 N
$30 \ldots 57$	0.08 Nm

## Loose actuators

IMPORTANT: These loose actuators can be used with items of series FR, FM, FX, FZ and FK only.

Technopolymer roller $\varnothing 18$ mm	Technopolymer roller $\varnothing 18$ mm	Adjustable square rod, $3 \times 3 \times 125 \mathrm{~mm}$	Flexible rod with pointed end	Adjustable round rod $\varnothing 3 \times 125 \mathrm{~mm}$	Technopolymer roller $\varnothing 20$ mm	
VF LE30 $\Theta$	VF LE31 $\Theta$	VF LE33	VF LE34	VF LE50	VF LE51 $\Theta$	
Technopolymer roller $\varnothing 20$ mm	Porcelain roller	Technopolymer roller $\varnothing 20$ mm	Adjustable actuator with technopolymer roller	Adjustable safety actuator with technopolymer roller	Technopolymer roller   $\varnothing 20$ mm	Adjustable fiber glass rod
VF LE52 $\Theta$	VF LE53 $\Theta{ }^{\text {(2) }}$	VF LE54 $\Theta$	VF LE55 $\Theta{ }^{(1)}$	VF LE56 $\Theta$	VF LE57 $\Theta$	VF LE69
- ${ }^{(1)}$ Actuator VF LE55 can only be used in safety applications if adjusted to its max. length, as shown in figure beside. If you need an adjustable lever for safety applications, use the adjustable safety lever VF LE56.   ${ }^{-12)}$ The position switch obtained by assembling switch FK •38-M1 (e.g. FK 338-M1, FK 3338-M1...) with actuator VF LE53 will not present the same travel diagrams and actuating forces as switch FK $\bullet 53-E 0 M 1$ V9 (e.g. FK 353-E0M1, FK 3353-E0M1V9...).   - ${ }^{(4)}$ The actuator cannot be rotated to the inside because it will mechanically interfere with the switch head.						
Items with code on green background are stock items			Accessories See page 225		$\rightarrow$ The 2D/3D files are available at www.pizzato.com	

Special loose actuators
IMPORTANT: These loose actuators can be used with items of series FR, FM, FX, FZ and FK only,
Stainless steel rollers, $\varnothing 20 \mathrm{~mm}$

VF LE31-R24 $\Theta$	VF LE51-R24 $\Theta$	VF LE52-R24 $\Theta$	VF LE54-R24 $\Theta$	VF LE55-R24 $\Theta{ }^{\text {(1) }}$	VF LE56-R24 $\Theta$	VF LE57-R24 $\Theta$

Technopolymer rollers, $\varnothing 35 \mathrm{~mm}$


Rubber rollers, $\varnothing 40$ mm


Rubber rollers, $\varnothing 50 \mathrm{~mm}$


## Protruding rubber rollers, $\varnothing 50 \mathrm{~mm}$



## Description



In line with the objectives of design and innovation, Pizzato Elettrica has developed the three modular NA-NB-NF series of prewired switches that are characterized by innovative and unique features.
This product range implements new solutions required by the market and contains decades of company experience in the position switch sector.

## Switches with connectors



The new fundamental characteristic of these prewired switch series is the separation between the switch body and the wired connector
The connector allows the user to change a product in the field without having to completely remove the wires.
Moreover this way it's easier to assemble products with different cable types and lengths.

Protection degrees IP67 and IP69K
$D$ These devices are designed to be used in the toughest environmental conditions and they pass the IP67 immersion test according to IEC 60529. They can therefore be used in all environments where the maximum protection of the housing is required. Special measures also allow devices to be used even in machines which are subjected to washing with high pressure warm water jets. In fact these devices pass the IP69K test according to ISO 20653, using jets of water to 100 atmospheres at a temperature of $80^{\circ} \mathrm{C}$.

## Adjustable levers

For switches with swivelling lever the lever can be adjusted in $10^{\circ}$ steps over the entire $360^{\circ}$ range.
The positive movement transmission is always guaranteed thanks to the particular geometrical coupling between the lever and the revolving shaft as prescribed for safety applications by the German standard BG-GS-ET-15.


Positive opening contact blocks with 1-2-3-4 poles


These series contact blocks are versatile and compact. In the same space of the previous versions now it's possible to have up to 4 different contacts, galvanically separated and provided with positive opening (NC contacts). The allowed standard combinations are $1 \mathrm{NO}+1 \mathrm{NC}, 2 \mathrm{NC}$, $1 \mathrm{NO}+2 \mathrm{NC}, 2 \mathrm{NO}+2 \mathrm{NC}$. Other combinations available on request.
Contact blocks have been studied so that they maintain the same connections position in the connector independently of the type of action (slow, snap) and the number of contacts. This allows use of the same cable with connector both for slow action and snap action units.

## Orientable heads

All heads can be turned in $90^{\circ}$ steps. The new head for revolving lever has been designed with dimensions contained inside the switch profile. This way it's possible to install switches by the wall.


Overturning levers


For switches with swivelling lever the lever can be fastened straight or reversed, maintaining the positive coupling.
This makes it possible to have two different work plans of the lever.

## Orientable cable output



The wired connector is provided with a notch to allow the cable bending up to $90^{\circ}$.
Therefore it's possible to install it at the wall and it's easier to adjust the cable to the supporting flange.

## Unidirectional heads

All switches with swivelling lever are supplied with a selector which allows to choose the lever operating direction.
The following operations are possible: right-left (industrial standard set up), only from right or only from left. You can select the operating direction by revolving a special ring nut inside this type of heads.


## Increased or reduced actuating force

For actuators with swivelling levers, versions with increased or reduced actuating force are available on request. This feature allows selection of a switch perfectly tailored for the application. For further information contact the Technical Department.


## $90^{\circ}$ transmission block for actuators



This component largely increases the application possibilities of this product range.
Actuators that can be attached directly to the switch body can also be fitted via the Transmission Block, increasing the positioning options and therefore the application possibilities.
The transmission block can be used also with swivelling lever heads Even though it is possible with some actuators, it is not advisable to connect more than one transmission block to the same switch.


## Reversible housing

The fixing holes and switch body shapes, added to the possibility of rotating the head, make this switch perfectly symmetrical.
If it's necessary to have the switch with cable output from left (the connector cannot be rotated), then it's possible to rotate completely the device maintaining the final actuator position unchanged.


## Extended temperature range

$$
\begin{aligned}
& \text { This range of switches is also available in a } \\
& \text { special version with an ambient operating } \\
& \text { temperature range of }-40^{\circ} \mathrm{C} \text { to }+80^{\circ} \mathrm{C} \text {. }
\end{aligned}
$$

They can be used for applications in cold stores, sterilisers and other devices with low temperature environments. Special materials that have been used to realize these versions, maintain unchanged their features also in these conditions, widening the installation possibilities.

## Adjustable levers with anti-unscrewing washer

Some applications present a problem due to fixing variations and carpentry laps.
In other cases small final adjustments are needed owing to the application. The majority of revolving levers for NA, NB, NF series can be adjusted for extension at 1 mm intervals.


This feature, in conjunction with the radial adjusting actuator provides unique flexibility of alignment whilst still maintaining the geometrical coupling between the lever and the revolving shaft as prescribed for safety applications.

## Switch components available separately

This product series is designed in a modular format, so that its single pieces can be purchased separately. This is advantageous to distributors of electrical material for stock flexibility and final customers for spare parts or new combinations.

NA B110BB-DN2 NA B11000 VN AAOBB VN CM11DN2


## M12 connectors

The long experience of Pizzato Elettrica has lead to the realization of the first 4-5-pin M12 connector integrated in a safety switch complying with the requirements of EN 60947-5-1. Its high insulation voltage Ui 250 Vac allows to mark it as suitable for safety applications $\Theta$.


## AMP connectors

The AMP connectors for 2-contact versions are also available. These connectors, especially developed for the automotive sector, are exempt from vibrations thanks to rapid coupling.


Selection diagram for NA-NB series items sold assembled



Code structure
Attention! The feasibility of a code number does not mean the effective availability of a product. Please contact our sales office.
NA B110AB-DN2 GR7T6W5

Housing	
NA	metal, hole spacing 20 mm
NB	metal, hole spacing 25 mm
Contact blocks	
B11	1NO+1NC, snap action
B02	2NC, snap action
B12	1NO+2NC, snap action
B22	2NO+2NC, snap action
BA1	1NO+1NC, snap action in deviation
(available only with M connector)	
G11	1NO+1NC, slow action
G02	2NC, slow action
G12	1NO+2NC, slow action
G22	2NO+2NC, slow action
H11	1NO+1NC, slow action, overlapped
H12	1NO +2NC, slow action, overlapped
H22	2NO+2NC, slow action, overlapped
L11	1NO+1NC, slow action closer
L12	1NO+2NC, slow action closer
L22	2NO+2NC, slow action closer
Other contact blocks on request.	

Actuator heads

Actuators

AB plunger


Ambient temperature

$$
\begin{array}{l|l} 
& -25^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C} \\
\hline \text { T6 } & -40^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}
\end{array}
$$

Rollers

0 without head
2 head for swivelling lever actuators

00 without actuator
AA short plunger
standard roller
R30 stainless steel $\varnothing 10.6 \mathrm{~mm}$
R29 stainless steel, $\varnothing 13 \mathrm{~mm}$
R18 technopolymer, $\varnothing 14 \mathrm{~mm}$
R23 stainless steel, $\varnothing 14 \mathrm{~mm}$
R7 technopolymer, $\varnothing 18 \mathrm{~mm}$
R22 technopolymer, $\varnothing 20 \mathrm{~mm}$
R24 stainless steel, $\varnothing 20 \mathrm{~mm}$
R19 technopolymer, $\varnothing 22 \mathrm{~mm}$
R25 technopolymer, $\varnothing 35 \mathrm{~mm}$

## Contact type

silver contacts (standard)
G silver contacts with $1 \mu \mathrm{~m}$ gold coating

## Connection type

2 cable, length 2 m (standard)
5 cable, length 5 m
K connector
Other cable lengths on request.
Cable or connector type
N black PVC cable, IEC 60332-1 (standard)
G grey PVC cable, CEI 20-22 II
H grey PUR cable, halogen free
R cable for railway applications (EN 50306-4)
Output direction
D cable or connector to the right
S connector at bottom

M M12 connector
A AMP superseal 1.5 connector
Check feasibility using table on page 122.


## Main features

- Metal housing, right or bottom cable output
- Protection degrees IP67 and IP69K
- 4 types of integrated cable available
- Versions with M12 connector for safety applications $\Theta$
- Versions with AMP connector
- 14 contact blocks available
- 36 actuators available

Markings and quality marks:
$\begin{array}{ll}\text { IMO approval: } & \text { CA02.04562 } \\ \text { UL approval: } & \text { E131787 } \\ \text { CCC approval: } & 2013010305653520 \\ \text { EAC approval: } & \text { RU C-IT ДM94.B.01024 }\end{array}$

## Technical data

Housing
Metal housing, baked powder coating, UV resistant
Version with integrated cable, standard length 2 m . Other lengths and special cables on request.
Versions with integrated M12 connector, 5 or 8 poles
Protection degree:
IP67 according to EN 60529
IP69K according to ISO 20653
(Protect the cables from direct high-pressure and high-temperature jets)
Corrosion resistance in saline mist:
$\geq 300$ hours in NSS according to ISO 9227

## General data

Ambient temperature: See table on page 122
Max. actuation frequency: 3600 operating cycles ${ }^{1} /$ hour
Mechanical endurance: $\quad 20$ million operating cycles ${ }^{1}$
Mounting position: any
Safety parameters:
$\mathrm{B}_{10 \mathrm{~d}}$ : 40,000,00 for NC contacts
Mechanical interlock, not coded: type 1 according to EN ISO 14119
Vibration resistance (actuators 0BB, 2KB, 2KC, 2KD):5 ... $150 \mathrm{~Hz}\left(7.9 \mathrm{~m} / \mathrm{s}^{2}\right.$ )
according to EN 61373 cl. 9
Tightening torques for installation: see pages 235-246
(1) One operation cycle means two movements, one to close and one to open contacts, as defined in EN 60947-5-1.

## Electrical data

Rated impulse withstand voltage ( $U_{\text {imp }}$ ):
Conditional short circuit current:
Pollution degree:

## 4 kV

1000 A according to EN 60947-5-1

In conformity with standards:
IEC 60947-5-1, EN 60947-5-1, IEC 60204-1, EN 60204-1, EN ISO 14119, EN ISO 12100, IEC 60529, EN 60529, ISO 20653, UL 508, CSA 22.2 No. 14.

## In conformity with the requirements of:

Low Voltage Directive 2006/95/EC, Machinery Directive 2006/42/EC and EMC Directive 2004/108/EC.
Positive contact opening in conformity with standards:
IEC 60947-5-1, EN 60947-5-1.

## § Installation for safety applications: <br> Use only switches marked with the symbol $\Theta$ aside the product code. Always connect the safety circuit to the NC contacts (normally closed contacts: see "internal connections" on page 122) as stated in EN 60947-5-1, encl. K, par. 2. Actuate the switch at least up to the positive opening travel shown in the travel diagrams on page 244 . Operate the switch at least with the positive opening force, indicated between brackets below each article, aside the minimum force value. All applicable standards must be respected.

§ If not expressly indicated in this chapter, for correct installation and utilization of all articles see chapter utilization requirements from page 235 to page 246.
\ Important: Switch off the circuit voltage before disconnecting the connector from the switch. The connector is not suitable for separation of electrical loads. According to EN 60204-1, 2NO+2NC versions with 8-pin M12 and AMP connector can be used only in PELV circuits.

## Characteristics approved by IMQ

Rated insulation voltage (Ui): 250 Vac
Conventional free air thermal current (Ith): $10 \mathrm{~A}(1-2$ contacts) / $6 \mathrm{~A}(2-3$ contacts) 4A (4 contacts or 5-pin M12 connector)
Protection against short circuits (fuse): $10 \mathrm{~A}(1-2$ contacts) / $6 \mathrm{~A}(2-3$ contacts)
/
Rated impulse withstand voltage ( $\mathrm{U}_{\text {imp }}$ ): 4 kV
Protection degree of the housing: IP67
MA terminals (saddle clamps)
Pollution degree:
Utilization category:
Operating voltage (Ue):
3
AC15 / DC13 (with connector)
$250 \mathrm{Vac}(50 \mathrm{~Hz}) / 24 \mathrm{Vdc}$ (with connector)
$3 \mathrm{~A} / 2 \mathrm{~A}$ (with connector)
Operating current (le):
Forms of the contact element: $X, Y, X+Y, X+X, Y+Y, Y+Y+X, X+X+Y, X+X+Y+Y, Z b$ Positive opening of contacts on contact blocks B01, B11, B02, B12, B21, B22, G01, G11, G02, G12, G21, G22, L01, L11, L02, L12, L21, L22, H01, H11, H02 H12, H21, H22
In conformity with standards: EN 60947-1, EN 60947-5-1 + A1:2009,
fundamental requirements of the Low Voltage Directive 2006/95/EC.

Characteristics approved by UL
Utilization categories R300 pilot duty (28 VA, 125-250 Vdc)
B300 pilot duty ( $360 \mathrm{VA}, 120-240 \mathrm{Vac}$ ) (1-2-3 cont.)
C300 pilot duty ( $180 \mathrm{VA}, 120-240 \mathrm{Vac}$ ) ( 4 cont.)
Data of housing type $1,4 \mathrm{X}$ "indoor use only", 12.
Housing data for versions with 1-2 contacts and type $N$ cable
type $1,4 \mathrm{X}$ "indoor use only"
In conformity with standard: UL 508, CSA 22.2 No. 14

Please contact our technical service for the list of approved products.

## Utilization temperatures and electrical data



Internal connections of the cable


## Internal connections of the connector

| $2 N O+2 N C$ | $1 N O+2 N C$ | $1 N O+1 N C$ | $2 N C$ | $1 N O+1 N C$ <br> in deviation |
| :--- | :--- | :--- | :--- | :--- | :--- |

Female connectors See page 226

Contact type: $\begin{array}{l\|l} \hline \mathbf{R} & \text { = snap action } \\ \mathbf{L} & \text { = slow action } \end{array}$				With external rubber gasket
Contact blocks				
B11 R	NA B110AA-DN2 $\Theta$ 1NO+1NC	NA B110AB-DN2 $\Theta$ 1NO+1NC	NA B110AC-DN2 $\odot$ 1NO+1NC	NA B110AE-DN2 $\ominus^{1 N O+1 N C}$
B02 R	NA B020AA-DN2 $\Theta$ 2NC	NA B020AB-DN2 $\Theta$ 2NC	NA B020AC-DN2 $\Theta$ 2NC	NA B020AE-DN2 $\Theta$ 2NC
B12 R	NA B120AA-DN2 $\Theta$ 1NO+2NC	NA B120AB-DN2 $\Theta$ 1NO+2NC	NA B120AC-DN2 $\Theta 1$ OO+2NC	NA B120AE-DN2 $\Theta$ 1NO+2NC
B22 B	NA B220AA-DN2 $\Theta 2 \mathrm{NO}+2 \mathrm{NC}$	NA B220AB-DN2 $\Theta 2 \mathrm{NO}+2 \mathrm{NC}$	NA B220AC-DN2 $\bigodot 2 \mathrm{NO}+2 \mathrm{NC}$	NA B220AE-DN2 $\Theta 2$ 2NO+2NC
G11 $\square$	NA G110AA-DN2 $\Theta$ 1no+1NC	NA G110AB-DN2 $\Theta$ 1NO+1NC	NA G110AC-DN2 $\Theta$ 1 $\mathrm{NO}+1 \mathrm{NC}$	NA G110AE-DN2 $\Theta$ 1NO+1NC
G02 L	NA G020AA-DN2 $\Theta 2$ NC	NA G020AB-DN2 $\Theta$ 2NC	NA G020AC-DN2 $\Theta 2$ NC	NA G020AE-DN2 $\Theta 2$ 2NC
G12 $\square$	NA G120AA-DN2 $\Theta 1$ (NO+2NC	NA G120AB-DN2 $\Theta 1$ INO+2NC	NA G120AC-DN2 $\Theta 1$ OO+2NC	NA G120AE-DN2 $\bigodot$ - 1 NO+2NC
G22 $\square$	NA G220AA-DN2 $\Theta 2 \mathrm{NO}+2 \mathrm{NC}$	NA G220AB-DN2 $\Theta 2 N \mathrm{O}+2 \mathrm{NC}$	NA G220AC-DN2 $\Theta 2 \mathrm{NO}+2 \mathrm{NC}$	NA G220AE-DN2 $\Theta 2$ NO+2NC
Max. speed	page 243 - type 4			
Min. force	$7 \mathrm{~N}(25 \mathrm{~N}$ )	$7 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$7 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$7 \mathrm{~N}(25 \mathrm{~N} \Theta)$
Travel diagrams	page 244 - group 1	page 244-group 1	page 244 - group 1	page 244 - group 1



Contact type:
$\mathbf{R}=$ snap action
$\mathbf{L}=$ slow action

Fixed only by threaded head
With external rubber gasket

All measures in the drawings are in mm


Contact blocks		With stainless steel roller on request							
B11	R	NA B112KC-DN2	$1 \mathrm{NO}+1 \mathrm{NC}$	NA B112KD-DN2	$\mathrm{NO}+1 \mathrm{NC}$	NA B112KE-DN2	$\mathrm{NO}+1 \mathrm{NC}$	NA B112KF-DN2	
B02	R	NA B022KC-DN2	$\rightarrow 2 \mathrm{NC}$	NA B022KD-DN2	$\Theta 2 N C$	NA B022KE-DN2	$\Theta 2 N C$	NA B022KF-DN2	$\Theta$
B12	R	NA B122KC-DN2	$\Theta 1 \mathrm{NO}+2 \mathrm{NC}$	NA B122KD-DN2	$\Theta 1 \mathrm{NO}+2 \mathrm{NC}$	NA B122KE-DN2	$\Theta 1 \mathrm{NO}+2 \mathrm{NC}$	NA B122KF-DN2	$\bigcirc$
B22	R	NA B222KC-DN2	$\Theta 2 \mathrm{NO}+2 \mathrm{NC}$	NA B222KD-DN2	$\Theta 2 \mathrm{NO}+2 \mathrm{NC}$	NA B222KE-DN2	$\Theta 2 \mathrm{NO}+2 \mathrm{NC}$	NA B222KF-DN2	$\Theta$
G11	L	NA G112KC-DN2	$\Theta 1 \mathrm{NO}+1 \mathrm{~N}$	NA G112KD-DN2	$\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	NA G112KE-DN2	$\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	NA G112KF-DN2	$\bigcirc$
G02	L	NA G022KC-DN2	$\Theta 2 N C$	NA G022KD-DN2	$\Theta 2 N C$	NA G022KE-DN2	$\Theta 2 N C$	NA G022KF-DN2	$\Theta$
G12	L	NA G122KC-DN2	$\Theta 1 \mathrm{NO}+2 \mathrm{NC}$	NA G122KD-DN2	$\Theta 1 \mathrm{NO}+2 \mathrm{NC}$	NA G122KE-DN2	$\Theta 1 \mathrm{NO}+2 \mathrm{NC}$	NA G122KF-DN2	$\Theta$
G22	L	NA G222KC-DN2	$\rightarrow 2 \mathrm{NO}+2 \mathrm{NC}$	NA G222KD-DN2	$\Theta 2 \mathrm{NO}+2 \mathrm{NC}$	NA G222KE-DN2	$\Theta 2 \mathrm{NO}+2 \mathrm{NC}$	NA G222KF-DN2	$\Theta 2 N$
	eed	page 243		page 243		page 243	1	page 243 -	e
		0.07 Nm (0.25	$\bigcirc$	0.07 Nm (0.2	$m$ )	$0.07 \mathrm{Nm}(0$	$\mathrm{m} \Theta$	0.07 Nm (0.2	m
Travel	grams	page 244 -		page 244 -	p 5	page 244	p	page 244	up
			M12 connector, right			M12 connector, bo		AMP superseal 1.5 connector	
To pu repla above NA	ase a   A with xample AA-DN	$B$ series product:   NB in the codes shown   $\rightarrow$ NB B110AA-DN2	To purchase a product with M12 connector from the right replace DN2 with DMK in the codes shown above. Example: NA B110AA-DN2 $\rightarrow$ NA B110AA-DMK			chase a product with $\mathbf{M}$ m below replace DN2 with des shown above. Example: 10AA-DN2 $\rightarrow$ NA B110AA	connec- To   SMK in to   sh   SMK NA	To purchase a product with AMP connector replace DN2 with SAK in the codes shown above. Example: NA B110AA-DN2 $\rightarrow$ NA B110AA-SAK	




All measures in the drawings are in mm

Contact type: $\begin{aligned} \hline \mathbf{R} & =\text { snap action } \\ \mathbf{L} & \text { = slow action } \end{aligned}$			
Contact blocks			
B11 $\quad$ R	NA B110AB-DN2W5 $\Theta$ - ${ }^{\text {NO}}+1$ +1NC	NA B110BB-DN2H0W5 $\Theta$ - ${ }^{\text {NOO }+1 N C}$	NA B110BB-DN2W5 $\Theta$ 1NO+1NC
B02 R	NA B020AB-DN2W5 $\Theta$ 2NC	NA B020BB-DN2HOW5 $\Theta$ 2NC	NA B020BB-DN2W5 $\Theta$ 2nc
B12 B	NA B120AB-DN2W5 $\Theta$ - ${ }^{\text {NO}}+2$ 2NC	NA B120BB-DN2HOW5 $\Theta$ - 1 NO +2 NC	NA B120BB-DN2W5 $\Theta$ 1NO+2NC
B22 $\quad$ R	NA B220AB-DN2W5 $\overbrace{}^{2 N O+2 N C}$	NA B220BB-DN2HOW5 $¢$ 2NO+2NC	NA B220BB-DN2W5 $\Theta$ 2NO+2NC
G11 $\square$	NA G110AB-DN2W5 $\Theta$ - ${ }^{\text {N }}$ + +1 NC	NA G110BB-DN2HOW5 $\Theta$ 1 ${ }^{\text {NO}}+1$ + ${ }^{\text {N }}$	NA G110BB-DN2W5 $\Theta$ 1NO+1NC
G02 L	NA G020AB-DN2W5 $\Theta$ 2NC	NA G020BB-DN2H0W5 $\Theta$ 2NC	NA G020BB-DN2W5 $\Theta$ 2nc
G12 $\square$	NA G120AB-DN2W5 $\Theta$ 1NO+2NC	NA G120BB-DN2HOW 5 ¢ 1 NO+2NC	NA G120BB-DN2W5 $\Theta$ 1NO+2NC
G22 $\square$	NA G220AB-DN2W5 $\Theta 2 \mathrm{NO}+2 \mathrm{NC}$	NA G220BB-DN2HOW 5 ¢ $2 \mathrm{NO}+2 \mathrm{NC}$	NA G220BB-DN2W5 $\Theta$ 2NO+2NC
Max. speed	page 243 - type 4	page 243 - type 2	page 243 - type 2
Min. force	$9.5 \mathrm{~N}(25 \mathrm{~N}$ )	$9.5 \mathrm{~N}(25 \mathrm{~N} \oplus)$	$9.5 \mathrm{~N}(25 \mathrm{~N}$ ¢)
Travel diagrams	page 244 - group 1	page 244 - group 1	page 244 - group 1



## Accessories

Article	Description
VN DT1F	Spacer for NA-NF series
VF D16B	By interposing the spacers   between one switch and the   next, it is possible to have 2   or more prewired switches,   preventing them from moving   in relation to one another.   $\mathbf{1 0}$ pcs. packs

M12 connectors with cable


## Technical data:

- Polyurethane connector body (4/5/8 poles)
- Polypropylene connector body (12 poles)
- Class 6 rated copper of the wires according to IEC 60228 for mobile installation (4/5/8 poles)
- Class 5 rated copper of the wires according to IEC 60228 for fixed installation ( 12 poles)
- Gold-plated contacts (resistance $<5 \mathrm{~m} \Omega$ )
- Self locking ring nut
- High flexibility wire suitable to be used in movable chains, with PVC sheath conforming to IEC 60332-3 and CEI 20-22II standards. With polyurethane sheath on request (4/5/8 poles)
- PVC cable, fixed installation (12 poles)


## Code structure

Attention! The feasibility of a code number does not mean the effective availability of a product. Please contact our sales office.

## VF CA4PD3M

No. of poles	
$\mathbf{4}$	4 poles
$\mathbf{5}$	5 poles
$\mathbf{8}$	8 poles
$\mathbf{1 2}$	12 poles

Sheath coating
P PVC (standard)
U PUR

## Connector type

D straight (standard)
G angled

Stock items
VF CA4PD3M
VF CA4PD5M
VF CA4PD0M
VF CA5PD3M
VF CA5PD5M
VF CA5PD0M
VF CA8PD5M
VF CA8PD0M
VF CA12PD5M
VF CA12PD0M

Attention! No stock item, minimum order quantity 100 pcs.

## M12 sockets, field wireable



## General data

Technopolymer connector body Gold-plated contacts Screw terminals for wiring Max. operating voltages
$250 \mathrm{Vac} / \mathrm{dc}$ (4 and 5 poles)
$30 \mathrm{Vac} / \mathrm{dc}$ (8 poles)
Maximum current
Protection degree
4 A Ambient temperature Wire cross-section

Article	Description	no. of poles
VF CBMP4DM04	Field wireable M12 socket, straight, for multipolar cables from $\varnothing 4$ to $\varnothing 6.5 \mathrm{~mm}$	4
VF CBMP5DM04	Field wireable M12 socket, straight, for multipolar cables from $\varnothing 4$ to $\varnothing 6.5 \mathrm{~mm}$	5
VF CBMP8DM04	Field wireable M12 socket, straight, for multipolar cables from $\varnothing 4$ to $\varnothing 7 \mathrm{~mm}$	8

Selection diagram for NF series items sold assembled




## Main features

- Technopolymer housing, right or bottom cable output
- Protection degrees IP67 and IP69K
- 2 types of integrated cable available
- Versions with M12 connector for safety applications $\Theta$
- Versions with AMP connector
- 14 contact blocks available
- 37 actuators available

Markings and quality marks:
$\begin{array}{ll}\text { IMO approval: } & \text { CAO2.04562 } \\ \text { UL approval: } & \text { E131787 } \\ \text { CCC approval: } & 2013010305653520 \\ \text { EAC approval: } & \text { RU C-IT ДM94.B. } 01024\end{array}$

## Technical data

## Housing

Housing made of fiber glass reinforced technopolymer, self-extinguishing, shock-proof and with double insulation $\square$.
Version with integrated cable, standard length 2 m . Other lengths and special cables on request.
Versions with integrated M12 connector, 4 or 8 poles
Protection degree:
IP67 according to EN 60529
IP69K according to ISO 20653
(Protect the cables from direct high-pressure
and high-temperature jets)
Corrosion resistance in saline mist:
$\geq 300$ hours in NSS according to ISO 9227

## General data

Ambient temperature: See table on page 132
Max actuation frequency:
Mechanical endurance:
3600 operating cycles $1 /$ hour
Mounting position:
20 million operating cycles ${ }^{1}$
Mounting position. any
Safety parameters:
$\mathrm{B}_{10 \mathrm{~d}}$ : 40,000,00 for NC contacts
Mechanical interlock, not coded: type 1 according to EN ISO 14119
Tightening torques for installation: see pages 235-246
(1) One operation cycle means two movements, one to close and one to open contacts, as defined in EN 60947-5-1.

## Electrical data

Rated impulse withstand voltage ( $U_{\text {imp }}$ ):
Conditional short circuit current:
Pollution degree:

```
4 kV
1000 A according to EN 60947-5-1
3
```


## In conformity with standards:

IEC 60947-5-1, EN 60947-5-1, IEC 60204-1, EN 60204-1, EN ISO 14119, EN ISO 12100, EN 60529, ISO 20653, UL 508, CSA 22.2 No. 14.

## In conformity with the requirements of:

Low Voltage Directive 2006/95/EC, Machinery Directive 2006/42/EC and EMC Directive 2004/108/EC.
Positive contact opening in conformity with standards: IEC 60947-5-1, EN 60947-5-1.

## Installation for safety applications: <br> Use only switches marked with the symbol $\Theta$ aside the product code. Always connect the safety circuit to the NC contacts (normally closed contacts: see "internal connections" on page 132) as stated in EN 60947-5-1, encl. K, par. 2. Actuate the switch at least up to the positive opening travel shown in the travel diagrams on page 244. Operate the switch at least with the positive opening force, indicated between brackets below each article, aside the minimum force value. All applicable standards must be respected. <br> § If not expressly indicated in this chapter, for correct installation and utilization of all articles see chapter utilization requirements from page 235 to page 246.

§ Important: Switch off the circuit voltage before disconnecting the connector from the switch. The connector is not suitable for separation of electrical loads.

## Characteristics approved by IMO

Rated insulation voltage (Ui): $\quad 250 \mathrm{Vac}$
Conventional free air thermal current (lth): 10 A ( $1-2$ contacts) / 6 A ( $2-3$ contacts) / 4 A (4 contacts or 4 -pin M12 connector)
Protection against short circuits (fuse): 10 A (1-2 contacts) / 6 A (2-3 contacts) /
4 A (4 contacts or 4-pin M12 connector), gG type
Rated impulse withstand voltage ( $\mathrm{U}_{\mathrm{imp}}$ ): 4 kV
Protection degree of the housing: ${ }^{\text {IP6 }}$
MA terminals (saddle clamps)
Pollution degree:
Utilization category:
Operating voltage (Ue):
3
AC15 / DC13 (with connector)
$250 \mathrm{Vac}(50 \mathrm{~Hz}) / 24 \mathrm{Vdc}$ (with connector)
$3 \mathrm{~A} / 2 \mathrm{~A}$ (with connector)
Operating current (le):
Forms of the contact element: $X, Y, X+Y, X+X, Y+Y, Y+Y+X, X+X+Y, X+X+Y+Y, Z b$
Positive opening of contacts on contact blocks B01, B11, B02, B12, B21, B22,
G01, G11, G02, G12, G21, G22, L01, L11, L02, L12, L21, L22, H01, H11, H02
H12, H21, H22
In conformity with standards: EN 60947-1, EN 60947-5-1 + A1:2009,
fundamental requirements of the Low Voltage Directive 2006/95/EC.

## Characteristics approved by UL

Utilization categories R300 pilot duty (28 VA, 125-250 Vdc)
B300 pilot duty ( $360 \mathrm{VA}, 120-240 \mathrm{Vac}$ ) (1-2-3 cont.)
C300 pilot duty ( $180 \mathrm{VA}, 120-240 \mathrm{Vac}$ ) ( 4 cont.)
Data of housing type $1,4 \mathrm{X}$ "indoor use only", 12.
Housing data for versions with 1-2 contacts and type N cable
type 1, 4X "indoor use only"
In conformity with standard: UL 508, CSA 22.2 No. 14

Please contact our technical service for the list of approved products.

## Utilization temperatures and electrical data



Internal connections of the cable

$2 \mathrm{NO}+2 \mathrm{NC}$	$1 \mathrm{NO}+2 \mathrm{NC}$	$1 \mathrm{NO}+1 \mathrm{NC}$	2 NC




violet-white

## Internal connections of the connector

$2 \mathrm{NO}+2 \mathrm{NC} \quad 1 \mathrm{NO}+2 \mathrm{NC} \quad 1 \mathrm{NO}+1 \mathrm{NC} \quad 2 \mathrm{NC}$


Contact type: $\begin{array}{\|l\|} \hline \mathbf{R} \\ \hline \mathbf{L} \\ \text { = snap action } \\ \text { = slow action } \end{array}$				With external rubber gasket
Contact blocks				
B11 R	NF B110AA-DN2 $\Theta$ - ${ }^{\text {N }}$ N+1NC	NF B110AB-DN2 $\underbrace{1 N O+1 N C}$	NF B110AC-DN2 $\Theta$ 1NO+1NC	NF B110AE-DN2 $\underbrace{1 N O+1 N C}$
B02 R	NF B020AA-DN2 $\Theta$ 2NC	NF B020AB-DN2 $\Theta 2$ 2NC	NF B020AC-DN2 $\Theta$ 2NC	NF B020AE-DN2 $\Theta$ 2NC
B12 B	NF B120AA-DN2 $\Theta$ 1NO+2NC	NF B120AB-DN2 $\Theta$ 1NO+2NC	NF B120AC-DN2 $\Theta$ 1NO+2NC	NF B120AE-DN2 $\Theta$ 1NO+2NC
B22 R	NF B220AA-DN2 $\Theta$ 2NO+2NC	NF B220AB-DN2 $\bigodot^{2 N O+2 N C}$	NF B220AC-DN2 $\overbrace{}^{2 N O+2 N C}$	NF B220AE-DN2 $\Theta$ 2NO+2NC
G11 $\square$	NF G110AA-DN2 $\Theta$ 1no+1NC	NF G110AB-DN2 $\Theta$ 1NO+1NC	NF G110AC-DN2 $\Theta$ 1NO+1NC	NF G110AE-DN2 $\Theta$ 1NO+1NC
G02 L	NF G020AA-DN2 $\Theta$ 2NC	NF G020AB-DN2 $\Theta$ 2NC	NF G020AC-DN2 $\Theta$ 2NC	NF G020AE-DN2 $\Theta$ 2NC
G12 $\square$	NF G120AA-DN2 $\Theta$ 1NO+2NC	NF G120AB-DN2 $\Theta$ 1NO+2NC	NF G120AC-DN2 $\Theta$ 1NO+2NC	NF G120AE-DN2 $\Theta$ 1NO+2NC
G22 $\square$	NF G220AA-DN2 $\Theta 2 \mathrm{NO}+2 \mathrm{NC}$	NF G220AB-DN2 $\Theta$ 2NO+2NC	NF G220AC-DN2 $\Theta 2 \mathrm{NO}+2 \mathrm{NC}$	NF G220AE-DN2 $\Theta 2 \mathrm{NO}+2 \mathrm{NC}$
Max. speed	page 243 - type 4			
Min. force	$7 \mathrm{~N}(25 \mathrm{~N}$ ) $)$	$7 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$7 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$7 \mathrm{~N}(25 \mathrm{~N} \Theta)$
Travel diagrams	page 244 - group 1	page 244-group 1	page 244 - group 1	page 244 - group 1


		With external rubber gasket	With external rubber gasket	With stainless steel roller on request
Contact blocks				
B11 R	NF B110BB-DN2 $\Theta 1$ NO+1NC	NF B110BE-DN2 $\quad$ (1NO+1NC	NF B110BG-DN2 $\Theta 1$ NO+1NC	NF B110CB-DN2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$
B02 R	NF B020BB-DN2 $\Theta 2 N C$	NF B020BE-DN2 $\Theta 2 N C$	NF B020BG-DN2 $\Theta 2 N C$	NF B020CB-DN2 $\quad$ 2NC
B12 $\quad$ R	NF B120BB-DN2 $\Theta 1$ NO+2NC	NF B120BE-DN2 $\Theta 1$ NO+2NC	NF B120BG-DN2 $\Theta 1$ NO+2NC	NF B120CB-DN2 $\Theta 1$ NO+2NC
B22 R	NF B220BB-DN2 $\Theta 2 \mathrm{NO}+2 \mathrm{NC}$	NF B220BE-DN2 $\Theta 2 \mathrm{NO}+2 \mathrm{NC}$	NF B220BG-DN2 $\Theta 2 \mathrm{NO}+2 \mathrm{NC}$	NF B220CB-DN2 $\Theta 2 \mathrm{NO}+2 \mathrm{NC}$
G11 L	NF G110BB-DN2 $\Theta 1$ NO +1 NC	NF G110BE-DN2 $\Theta 1$ NO+1NC	NF G110BG-DN2 $\Theta 1$ NO+1NC	NF G110CB-DN2 $\quad$ - 1 NO+1NC
G02 L	NF G020BB-DN2 $\Theta 2 N C$	NF G020BE-DN2 $\Theta 2$ NC	NF G020BG-DN2 $\Theta 2 N C$	NF G020CB-DN2 $\Theta 2 N C$
G12 L	NF G120BB-DN2 $\Theta 1$ NO+2NC	NF G120BE-DN2 $\Theta 1$ NO+2NC	NF G120BG-DN2 $\Theta 1$ NO+2NC	NF G120CB-DN2 $\Theta 1$ NO+2NC
G22 L	NF G220BB-DN2 $\Theta 2 \mathrm{NO}+2 \mathrm{NC}$	NF G220BE-DN2 $\Theta 2 \mathrm{NO}+2 \mathrm{NC}$	NF G220BG-DN2 $\Theta 2$ NO+2NC	NF G220CB-DN2 $\Theta 2 \mathrm{NO}+2 \mathrm{NC}$
Max. speed	page 243 - type 2	page 243 - type 5	page 243 - type 5	page 243 - type 3
Min. force	$7 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$7 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$7 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$5 \mathrm{~N}(25 \mathrm{~N} \Theta)$
Travel diagrams	page 244-group 1	page 244 - group 1	page 244 - group 1	page 244 - group 2

M12 connector, right


To purchase a product with M12 connector from
the right replace DN2 with DMK in the codes shown above. Example:
NF B110AA-DN2 $\rightarrow$ NF B110AA-DMK

M12 connector, bottom


AMP superseal 1.5 connector


To purchase a product with M12 connector from below replace DN2 with SMK in the codes shown above. Example:
NF B110AA-DN2 $\rightarrow$ NF B110AA-SMK

To purchase a product with AMP connector replace DN2 with SAK in the codes shown above. Example:
NF B110AA-DN2 $\rightarrow$ NF B110AA-SAK

Contact type:
$\mathbf{R}$ = snap action   $\mathbf{L}=$ slow action

Fixed only by threaded head
With external rubber gasket

All measures in the drawings are in mm

	With external rubber gasket	With external rubber gasket	With stainless steel roller on request	With stainless steel roller on request
Contact type: $\begin{array}{ll} \mathbf{R} & =\text { snap action } \\ \hline \mathbf{L} & =\text { slow action } \end{array}$				
B11 $\quad$ R	NF B110HE-DN2 1NO+1NC	NF B110HH-DN2 1NO+1NC	NF B112KA-DN2 $\Theta$ 1NO+1NC	NF B112KB-DN2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$
B02 R	NF B020HE-DN2 2NC	NF B020HH-DN2 2NC	NF B022KA-DN2 $\quad$ 2NC	NF B022KB-DN2 $\quad \rightarrow 2 \mathrm{NC}$
B12 R	NF B120HE-DN2 1NO+2NC	NF B120HH-DN2 1NO+2NC	NF B122KA-DN2 $\Theta 1$ NO+2NC	NF B122KB-DN2 $\Theta 1$ NO+2NC
B22 R	NF B220HE-DN2 $2 \mathrm{NO}+2 \mathrm{NC}$	NF B220HH-DN2 $2 \mathrm{NO}+2 \mathrm{NC}$	NF B222KA-DN2 $\Theta 2 \mathrm{NO}+2 \mathrm{NC}$	NF B222KB-DN2 $\Theta 2 \mathrm{NO}+2 \mathrm{NC}$
G11 L			NF G112KA-DN2 $\quad \Theta 1 \mathrm{NO}+1 \mathrm{NC}$	NF G112KB-DN2 $\quad \Theta 1 \mathrm{NO}+1 \mathrm{NC}$
G02 L	NF G020HE-DN2 2NC	NF G020HH-DN2 2NC	NF G022KA-DN2 $\Theta$ 2NC	NF G022KB-DN2 $\Theta 2 N C$
G12 L			NF G122KA-DN2 $\Theta$ 1NO+2NC	NF G122KB-DN2 $\Theta 1 \mathrm{NO}+2 \mathrm{NC}$
G22 L			NF G222KA-DN2 $\Theta 2 N \mathrm{O}+2 \mathrm{NC}$	NF G222KB-DN2 $\quad \rightarrow 2 \mathrm{NO}+2 \mathrm{NC}$
Max. speed	$1 \mathrm{~m} / \mathrm{s}$	$1 \mathrm{~m} / \mathrm{s}$	page 243 - type 1	page 243 - type 1
Min. force	0.07 Nm	0.03 Nm	$0.07 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.07 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$
Travel diagrams	page 244 - group 4	page 244 - group 4	page 244 - group 5	page 244 - group 5


ntact block	With stainless steel roller on request			
B11 R	NF B112KC-DN2 $\Theta$ 1NO+1NC	NF B112KD-DN2 $\quad$ 1NO+1NC	NF B112KE-DN2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	NF B112KF-DN2 $\quad$ 1 ${ }^{1 N O+1 N C}$
B02 R	NF B022KC-DN2 $\Theta 2 N C$	NF B022KD-DN2 $\Theta 2 N C$	NF B022KE-DN2 $\Theta 2 N C$	NF B022KF-DN2 $\Theta 2 N C$
B12 R	NF B122KC-DN2 $\Theta 1 \mathrm{NO}+2 \mathrm{NC}$	NF B122KD-DN2 $\Theta 1 \mathrm{NO}+2 \mathrm{NC}$	NF B122KE-DN2 $\Theta 1$ NO+2NC	NF B122KF-DN2 $\Theta 1 \mathrm{NO}+2 \mathrm{NC}$
B22 R	NF B222KC-DN2 $\Theta 2 N \mathrm{O}+2 \mathrm{NC}$	NF B222KD-DN2 $\Theta 2 N O+2 N C$	NF B222KE-DN2 $\Theta 2 \mathrm{NO}+2 \mathrm{NC}$	NF B222KF-DN2 $\quad$ 2NO+2NC
G11 L	NF G112KC-DN2 $\Theta 1$ NO+1NC	NF G112KD-DN2 $\Theta 1$ NO+1NC	NF G112KE-DN2 $\Theta 1$ NO+1NC	NF G112KF-DN2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$
G02 L	NF G022KC-DN2 $\Theta 2 N C$	NF G022KD-DN2 $\Theta 2 N C$	NF G022KE-DN2 $\Theta 2 N C$	NF G022KF-DN2 $\quad$ 2NC
G12 L	NF G122KC-DN2 $\Theta$ 1NO+2NC	NF G122KD-DN2 $\quad$ 1NO+2NC	NF G122KE-DN2 $\Theta 1$ NO+2NC	NF G122KF-DN2 $\Theta 1$ NO+2NC
G22 L	NF G222KC-DN2 $\Theta 2 N O+2 N C$	NF G222KD-DN2 $\quad \Theta$ 2NO+2NC	NF G222KE-DN2 $\Theta 2 \mathrm{NO}+2 \mathrm{NC}$	NF G222KF-DN2 $\quad \Theta 2 \mathrm{NO}+2 \mathrm{NC}$
Max. speed	page 243 - type 1			
Min. force	$0.07 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$			
Travel diagrams	page 244 - group 5			



M12 connector, bottom


AMP superseal 1.5 connector


To purchase a product with M12 connector from below replace DN2 with SMK in the codes shown above. Example:
NF B110AA-DN2 $\rightarrow$ NF B110AA-SMK

To purchase a product with AMP connector replace DN2 with SAK in the codes shown above. Example:
NF B110AA-DN2 $\rightarrow$ NF B110AA-SAK



Contact type:   $\mathbf{R}$ = snap action   $\mathbf{L}$ = slow action			
Contact blocks			
B11 $\quad$ R	NF B110AB-DN2W5 $\Theta$ 1 ${ }^{\text {NO}+1 N C}$	NF B110BB-DN2H0W5 $\Theta$ 1NO+1NC	NF B110BB-DN2W5 $\Theta$ 1NO+1NC
B02 B	NF B020AB-DN2W5 $\Theta 2$ 2NC	NF B020BB-DN2HOW5 $\Theta$ 2NC	NF B020BB-DN2W5 $\Theta$ 2NC
B12 B	NF B120AB-DN2W5 $\Theta$ 1NO+2NC	NF B120BB-DN2HOW5 $\Theta$ - ${ }^{\text {N }}$ O +2 NC	NF B120BB-DN2W5 $\Theta$ 1NO+2NC
B22 $\quad$ R	NF B220AB-DN2W5 $\overbrace{}^{2 N O+2 N C}$	NF B220BB-DN2H0W5 $\Theta$ 2NO+2NC	NF B220BB-DN2W5 $\Theta$ 2NO+2NC
G11 $\square$	NF G110AB-DN2W5 $\Theta$ ino +1 NC	NF G110BB-DN2HOW5 $\Theta$ 1NO+1Nc	NF G110BB-DN2W5 $\Theta$ 1NO+1NC
G02 L	NF G020AB-DN2W5 $\Theta$ 2NC	NF G020BB-DN2H0W5 $\Theta$ 2NC	NF G020BB-DN2W5 $\Theta$ 2nc
G12 $\square$	NF G120AB-DN2W5 $\Theta$ - 1 NO+2NC	NF G120BB-DN2HOW5 $\Theta$ 1 ${ }^{\text {NO}}+2 \mathrm{NC}$	NF G120BB-DN2W5 $\ominus^{\text {in }}$ NO+2NC
G22 $\square$	NF G220AB-DN2W5 $\Theta 2 \mathrm{NO}+2 \mathrm{NC}$	NF G220BB-DN2HOW5 $\Theta$ 2NO+2NC	NF G220BB-DN2W5 $\Theta 2 \mathrm{NO}+2 \mathrm{NC}$
Max. speed	page 243 - type 4	page 243 - type 2	page 243 - type 2
Min. force	$9.5 \mathrm{~N}(25 \mathrm{~N}$ )	$9.5 \mathrm{~N}(25 \mathrm{~N} \oplus)$	$9.5 \mathrm{~N}(25 \mathrm{~N} \Theta)$
Travel diagrams	page 244 - group 1	page 244 - group 1	page 244 - group 1


	With external gasket		With external gasket		With external gasket	
$\begin{aligned} & \text { Contact blocks } \\ & \text { B11 } \mathrm{R} \\ & \hline \end{aligned}$	NF B110HB-DN2W5	1NO+1NC	NF B110HE-DN2W5	1NO+1NC	NF B110HH-DN2W5	$1 \mathrm{NO}+1 \mathrm{NC}$
B02 R	NF B020HB-DN2W5	2NC	NF B020HE-DN2W5	2NC	NF B020HH-DN2W5	2NC
B12 R	NF B120HB-DN2W5	$1 \mathrm{NO}+2 \mathrm{NC}$	NF B120HE-DN2W5	$1 \mathrm{NO}+2 \mathrm{NC}$	NF B120HH-DN2W5	$1 \mathrm{NO}+2 \mathrm{NC}$
B22	NF B220HB-DN2W5	$2 \mathrm{NO}+2 \mathrm{NC}$	NF B220HE-DN2W5	$2 \mathrm{NO}+2 \mathrm{NC}$	NF B220HH-DN2W5	$2 \mathrm{NO}+2 \mathrm{NC}$
G11 L						
G02 L	NF G020HB-DN2W5	2NC	NF G020HE-DN2W5	2NC	NF G020HH-DN2W5	2NC
G12 L						
G22 L						
Max. speed	1 m		$1 \mathrm{~m} / \mathrm{s}$		$1 \mathrm{~m} / \mathrm{s}$	
Min. force	0.08		0.12 N		0.08 N	
Travel diagrams	page 244	oup 4	page 244 -	oup 4	page 244 -	up 4

M12 connector, right


To purchase a product with M12 connector from the right replace DN2 with DMK in the codes shown above. Example:
NF B110AA-DN2 $\rightarrow$ NF B110AA-DMK

M12 connector, bottom


AMP superseal 1.5 connector



To purchase a product with M12 connector from below replace DN2 with SMK in the codes shown above. Example:
NF B110AA-DN2 $\rightarrow$ NF B110AA-SMK

To purchase a product with AMP connector replace DN2 with SAK in the codes shown above. Example:
NF B110AA-DN2 $\rightarrow$ NF B110AA-SAK

## Accessories



M12 connectors with cable

## Technical data:

- Polyurethane connector body (4/5/8 poles)
- Polypropylene connector body (12 poles)
- Class 6 rated copper of the wires according to IEC 60228 for mobile installation (4/5/8 poles)
- Class 5 rated copper of the wires according to IEC 60228 for fixed installation ( 12 poles)
- Gold-plated contacts (resistance $<5 \mathrm{~m} \Omega$ )
- Self locking ring nut
- High flexibility wire suitable to be used in movable chains, with PVC sheath conforming to IEC 60332-3 and CEI 20-22II standards. With polyurethane sheath on request (4/5/8 poles)
- PVC cable, fixed installation (12 poles)


## Code structure

Attention! The feasibility of a code number does not mean the effective availability of a product. Please contact our sales office.

## VF CA4PD3M

No. of poles	
$\mathbf{4}$	4 poles
$\mathbf{5}$	5 poles
$\mathbf{8}$	8 poles
$\mathbf{1 2}$	12 poles

Sheath coating
P PVC (standard)
U PUR

## Connector type

D straight (standard)
G angled

Stock items
VF CA4PD3M
VF CA4PD5M
VF CA4PD0M
VF CA5PD3M
VF CA5PD5M
VF CA5PD0M
VF CA8PD5M
VF CA8PD0M
VF CA12PD5M
VF CA12PD0M

Attention! No stock item, minimum order quantity 100 pcs

## M12 sockets, field wireable



## General data

Technopolymer connector body Gold-plated contacts Screw terminals for wiring Max. operating voltages
$250 \mathrm{Vac} / \mathrm{dc}$ (4 and 5 poles)
$30 \mathrm{Vac} / \mathrm{dc}$ (8 poles)
Maximum current
Protection degree
IP67 according to EN 60529
Ambient temperature
Wire cross-section
from $0.25 \mathrm{~mm}^{2}$ (24 AWG) to $0.5 \mathrm{~mm}^{2}$ (20 AWG)

Article	Description	no. of poles
VF CBMP4DM04	Field wireable M12 socket, straight, for multipolar cables from $\varnothing 4$ to $\varnothing 6.5 \mathrm{~mm}$	4
VF CBMP5DM04	Field wireable M12 socket, straight, for multipolar cables from $\varnothing 4$ to $\varnothing 6.5 \mathrm{~mm}$	5
VF CBMP8DM04	Field wireable M12 socket, straight, for multipolar cables from $\varnothing 4$ to $\varnothing 7 \mathrm{~mm}$	8

Selection diagram for NA - NB - NF series components sold separately


VN AOOKA $\odot$ VN AOOKB $\oplus$ VN AOOKC $\oplus$ VN AOOKD $\odot$ VN A00KE $\oplus$ VN AOOKF $\oplus$
VN AA200 $\oplus$
Metal head
for swivelling
lever actuators


VN AA000-W5 ©
$90^{\circ}$ transmission block
swivelling lever, metal swivelling metal swivelling metal swivelling metal swivelling metal straight, with lever, straight, lever, shaped, lever, shaped, lever, shaped, swivelling roller $\varnothing 18 \mathrm{~mm}$ with roller $\varnothing$ with roller $\varnothing$ with roller $\varnothing$ with roller $\varnothing$ lever, straight, $18 \mathrm{~mm} \quad 14 \mathrm{~mm} \quad 14 \mathrm{~mm} \quad 20 \mathrm{~mm} \quad$ with roller $\varnothing$

NA METAL housing hole spacing 20 mm NA B11000 $\Theta 1$ NO+1NC $\boldsymbol{R}$ NA G11000 $\odot 1$ NO +1 NC $\square$ NA L11000 $\Theta 1 N O+1 N C$ LA NA H11000 $\Theta 1$ NO +1 NC LO NA B02000 $\odot 2$ 2NC $\quad$ R NA G02000 $\oplus 2$ NC $\quad \mathrm{L}$ NA B20000 $\Theta 2$ NO $\quad$ R NA G20000 $\Theta 2$ NO $\quad$ L NA B12000 $\Theta$ 1NO+2NC $\quad$ R NA G12000 $\odot 1$ NO +2 NC $\square$ NA L12000 $\Theta 1$ NO +2 NC LA NA H12000 $\Theta 1$ NO +2 NC LO NA B22000 $\Theta 2 N O+2 N C R$ NA G22000 $\Theta 2 N O+2 N C-L$ NA L22000 $\odot 2 N O+2 N C$ LA NA H22000 $\odot 2$ NO +2 NC LO


It is forbidden to install
VN CP•••• connectors on metal housings


Article code composition examples

§ Installation for safety applications:
To obtain a safety switch with positive opening $\Theta$, only join housings bearing the positive opening symbol next to the code $\Theta$ to actuators bearing the positive opening symbol next to the code $\Theta$.
Example: VN A00KB $\odot$ + VN AA200 $\odot+$ NA B11000 $\odot$

## Housings



All measures in the drawings are in mm


Connectors with cable

metal connector for NA and NB housing		
VN CM11DN2 1NO+1NC	2	
VN CM11DN5 1NO+1NC	5	
VN CM12DN2 1NO+2NC	2	
VN CM12DN5 1NO+2NC	5	
VN CM22DN2 2NO+2NC	2	
VN CM22DN5 2NO+2NC	5	
VN CM11DH2 1NO+1NC	2	
VN CM11DH5 1NO+1NC	5	
VN CM12DH2 1NO+2NC	2	H
VN CM12DH5 1NO+2NC	5	

Other cable lengths on request

technopolymer connector for NF housing			

## M12 or AMP connectors

§ Important: Always check that the electric load used respects the voltage and current limits for the connectors. See tables on page 122 and 132


technopolymer connectors for NF housings	
M12 connector, right $\square$	M12 connector, bottom
VN CP11DMK 1NO+1NC VN CP02DMK 2NC VN CP22DMK 2NO+2NC	VN CP11SMK 1NO+1NC VN CP02SMK 2NC VN CP22SMK 2NO+2NC
AMP superseal 1.5	
VN CP11SAK 1NO+1NC   VN CP02SAK 2NC   VN CP20SAK 2NO	

Items with code on green background are stock items
Accessories See page 225
The 2D/3D files are available at www.pizzato.com

Actuators All measures in the drawings are					
	$\cdots$ 星	$\frac{88}{\square}$			
VN AAOAA $\Theta$	VN AAOAB $\Theta$	VN AAOAC $\Theta$	VN AAOAE $\Theta$	VN AAOBB $\Theta$	VN AAOBE $\Theta$
VN AAOCB $\odot$	VNAAOCH $\Theta$	VN AAOCP $\Theta$	VN AAOCV $\Theta$	VN AAOEB $\Theta$	VN AAOEE $\Theta$
	$\overbrace{i=1}^{\square}$				
VN AAOFB $\Theta$	VNAAOGB $\Theta$	VN AAOHB	VN AAOHE	VN AAOHH	

Levers All measures in the drawings are in mm
ATTENTION: These loose actuators can be used with products of series NA, NB and NF only.

VN A00KA $\Theta$	VN A00KB $\Theta$	VN A00KC $\Theta$	VN A00KD $\Theta$	VN AOOKE $\Theta$	VN A00KF $\Theta$



VN A00LL	VN A00LP $\Theta$


Levers with stainless steel external metallic parts				
	VN A00KB-V38	VN A00KE-V38 $\odot$	VN A00KG-V38 $\odot$	VN A00KP-V38 $\odot$

Heads

$90^{\circ}$ transmission block


## Description



Microswitches of MK series have been developed in order to add new features to traditional and tested microswitches of Pizzato Elettrica.
These products have been designed with shapes and fixing perfectly interchangeable with the previous ones and with various additional functions useful to extend the application field.

The main innovation of this series is the tripping device modern and evolved, with qualitative features higher than solutions present on the market.
The electrical contact on new microswitch has been realized with higher reliability technology, thanks to the double and redundant shape, and has the possibility to carry out operations with positive opening. The housing of the new microswitch provides the possibility to seat gaskets in order to seal the device against fine dusts or liquids up to IP65 degree. Fastening terminals of conductors are more practical and allow the fixing of different diameter cables or the possibility to choose different bends of faston contacts. For high quantity it's possible to supply the microswitch only with the contact NO or NC , in order to minimize purchase costs.

## Contact block reliability

In the following table we refer to the typical microswitch contact structure (type A) normally used in the industry, compared with the innovative solution that Pizzato Elettrica uses in new MK series microswitches: movable contact with single interruption and double contacts (type B). As you can see from the table below, this last structure (type B) offers half of the contact resistance (R) than the simple mobile contact (type A) and a lower probability of failure (fe).
In fact, defined $x$ the probability of a commutation failure of a single interruption, it results that in the type $A$ the failure probability fe $=x$, in the type $B$ the probability $f e \cong x^{2}$. This means that if in a certain situation the probability of a single interruption failure $x$ is equal, for instance, to $1 \times 10^{-4}$ ( 1 failed interruption every 10,000) we will have:

- for type A one failed commutation every 10,000.
- for type B one failed commutation every 100,000,000

Type	Diagram	Description	Contact resistance $R$	Failure probability fe
A   Customary microswitch		mobile contact, single interruption	$R=R c$	$f e=x$
B   Pizzato MK series microswitch		contacts with single interruption and double contacts	$\mathrm{R}=\mathrm{Rc} / 2$	$f e \cong x^{2}$



Extended temperature range


For the new MK series versions with extended temperature range are available on request. Differently from standard MK microswitches with temperature range from $+85 \mathrm{C}^{\circ}$ to $-25 \mathrm{C}^{\circ}$, these special versions can be used in places where the ambient temperature changes from $+85 \mathrm{C}^{\circ}$ to $-40^{\circ} \mathrm{C}$. They can be installed inside cold stores, sterilizers or other equipment with very low ambient temperature. Special materials that have been used to realize these versions, maintain unchanged their features also in these conditions, widening the installation possibilities.

## Microswitches for safety applications



All microswitches that have the symbol $\Theta$ beside the code are with positive opening, therefore suitable for safety applications. These microswitches are provided with a rigid connection between button and NC contacts, which are opened by force through a strong/sturdy internal safety lever.
The positive opening has been realised in conformity with the standard EN 609475 1, enclosure K, therefore these microswitches are suitable for the installation for people's protection.

## Protection degree IP65

By installing microswitches MK $\bullet \bullet 2 \bullet \bullet \bullet$ with terminal covers VF MKC•22 or terminal covers VF MKC•23, it's possible to obtain a microswitch fully dust proof and waterproof. Thanks to special rubber gaskets anti-oil, we achieve the protection degree IP65. For application with high presence of dirtiness, are available also versions with double gasket in the button (internal + external). ex. MK $\bullet \bullet 2 \bullet 12$ or MK $\bullet \bullet 2 \bullet 13$.


## Clamping screw plates for different diameter cables (MK V•)



These clamping screw plates have a particular "roofing tile" structure and are connected loosely to the clamping screw. In this way, during the wires fixing, the clamping screw plate is able to suit to cables of different diameter (see picture) and tends to tighten the wires toward the screw instead of permitting them to escape towards the outside.

## Stackable terminal covers with wiretrap cable gland

New terminal covers supplied with wiretrap cable gland are provided for the protection degree up to IP65. These terminal covers are snap-in assembled and they have small dimensions in the microswitch profile, it's possible to install them also on microswitches fixed side by side.
See page 154 .


## Orientable actuators

Thanks to the new patented lateral fixing
 system, it's possible to rotate the roller of microswitches MK $\bullet \bullet \bullet 15$ and MK $\bullet \bullet \bullet 17$ in $90^{\circ}$ steps.
The lateral fixing allows to disconnect the actuator from the body also when the actuator is already fixed to the racket. The flexibility of the product allows also to unify items on stock for applications that require roller both longitudinal or transversal.




## Main features

- Technopolymer housing
- High reliability contacts
- Protection degree up to IP65
- 4 terminal types available
- 47 actuators available
- Versions with positive opening $\Theta$
- Versions with gold-plated silver contacts
- Terminal covers with wiretrap cable gland


## Markings and quality marks:

## 

IMQ approval: CA02.05772
UL approval:
CCC approval:
EAC approval:

## Technical data

## Housing

Housing made of glass fiber reinforced technopolymer, self-extinguishing and shockproof.
Protection degree acc. to EN 60529: IP00 without terminal cover
IP20 (with terminal cover VF C01, VF C03)
IP40 (with terminal cover VF MKC••1•, VF C02)
IP65 (with terminal cover VF MKC•22 +
MK V•2••• or VF MKC $\bullet 23+$ MK H•2•••)

## General data

Ambient temperature: $\quad-25^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$
Max. actuation frequency:
3600 operating cycles ${ }^{1} /$ hour
Mechanical endurance: $\quad 10$ million operating cycles ${ }^{1}$
Safety parameters:
$\mathrm{B}_{10 \mathrm{~d}}$ : 20,000,000 for NC contacts
Tightening torques for installation:
see pages 235-246
(1) One operation cycle means two movements, one to close and one to open contacts, as defined in EN 60947-5-1.

## Cable cross section (flexible copper strands)

MK series: $\quad \min . \quad 1 \times 0.34 \mathrm{~mm}^{2} \quad(1 \times$ AWG 22)
$\max . \quad 2 \times 1.5 \mathrm{~mm}^{2} \quad(2 \times$ AWG 16)

## In conformity with standards:

IEC 60947-5-1, EN 60947-5-1, IEC 60529, EN 60529, EN 60947-1, IEC 60947-1. Approvals:
UL 508, CSA 22.2 No.14, EN 60947-1, EN 60947-5-1.

## In conformity with the requirements of:

Low Voltage Directive 2006/95/EC, Machinery Directive 2006/42/EC and EMC Directive 2004/108/EC.
Positive contact opening in conformity with standards:
IEC 60947-5-1, EN 60947-5-1.

Installation for safety applications:
Use only microswitches marked with the symbol $\Theta$ aside the product code. Always connect the safety circuit to the NC contacts (normally closed contacts) as stated in standard EN 60947-5-1, encl. K, par. 2. Actuate the switch at least up to the positive opening travel (CAP) stated aside the article code. Actuate the switch at least with the positive opening force (FAP) stated aside the article code.
§ If not expressly indicated in this chapter, for correct installation and utilization of all articles see chapter utilization requirements from page 235 to page 246.

Electrical data		Utilization category	
Thermal current (lth):	16 A		
Rated insulation voltage (Ui):	250 Vac 300 Vdc	Alternating current: $\mathrm{AC} 15(50 \ldots 60 \mathrm{~Hz})$	
Rated impulse withstand voltage $\left(\mathrm{U}_{\mathrm{imp}}\right)$ :	4 kV	$\mathrm{Ue}(\mathrm{V})$	250
Conditional short circuit current:	le (A)	6	6
Protection against short circuits:	1000 A acc. to EN $60947-5-1$	Direct current: DC13	
Pollution degree:	type gG fuse 16 A 250 V	$\mathrm{Ue} \mathrm{(V)}$	24
Dielectric strength	3	le (A)	5

## Characteristics approved by IMO and CCC

Rated insulation voltage (Ui): 250 Vac
Conventional free air thermal current (lth): 16 A
Protection against short circuits: type gG fuse 16 A 250 V
Rated impulse withstand voltage (Uimp): 4 kV
Conditional short circuit current: 1000 A
Protection degree of the housing: IP00
Terminals: screw terminals/faston
Pollution degree: 3
Utilization category: AC15
Operating voltage (Ue): $250 \mathrm{Vac}(50 \mathrm{~Hz})$
Operating current (le): 5 A
Forms of the contact element: $\mathrm{X} ; \mathrm{Y} ; \mathrm{C}$
Positive opening of contacts on contact blocks: 1, 3
In conformity with standards: EN 60947-1, EN 60947-5-1+ A1:2009, fundamental requirements of the Low Voltage Directive 2006/95/EC.

Please contact our technical service for the list of approved products.

Characteristics approved by UL
Utilization categories
Q300 (69 VA, 125-250 Vdc)
A300 (720 VA, $120 \ldots 300 \mathrm{Vac}$ )
In conformity with standard: UL 508, CSA 22.2 No. 14

Please contact our technical service for the list of approved products.

## Circuit diagram

With direct and back direct action (F, D)



With inverted action (R)


Actuation forces and travels


FS operating force
FR releasing force

FAP positive opening force
Microswitches with direct action




MK V11D10 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$ PC $0,5 \mathrm{~mm}$ FS 4 N   OC $5,5 \mathrm{~mm}$ FR 3 N     CD $0,05 \mathrm{~mm}$ FAP 20 N   CAP $2,2 \mathrm{~mm}$	MK V11D12 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$ PC $0,5 \mathrm{~mm}$ FS $4,5 \mathrm{~N}$    OC $5,5 \mathrm{~mm}$ FR 3 N    CD $0,05 \mathrm{~mm}$ FAP 20 N    CAP $2,2 \mathrm{~mm}$    
Maximum and Minimum speed page 245 - type 1	Maximum and Minimum speed page 245 - type 1
	Fixed only by threaded head
MK V11D13 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$ PC $0,6 \mathrm{~mm}$ FS 6 N    OC $5,4 \mathrm{~mm}$ FR 4 N    CD $0,05 \mathrm{~mm}$ FAP 20 N    CAP $2,2 \mathrm{~mm}$	MK V11D15 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$ PC $0,5 \mathrm{~mm}$ FS 4 N    OC $5,5 \mathrm{~mm}$ FR 3 N    CD $0,05 \mathrm{~mm}$ FAP 20 N    CAP $2,2 \mathrm{~mm}$    








Microswitches MK series


MK





Microswitches MK series


Terminals outline dimensions


Screw terminals $\mathbf{V}$ with plate


Vertical faston $\mathbf{H}$ terminals

$\xrightarrow{-19} 19 \leq 6.4$


Faston terminals $\mathbf{F}$, right bending


Faston terminals $\mathbf{G}$, left bending (on request)

Note: H vertical faston terminals can be bent according to one's installation requirements.
We recommend to bend the faston with an angle not higher than $45^{\circ}$ and to carry out this operation no more than 5 times.

Protections (terminal covers)


Protective terminal cover for screw terminals snap-in assembled and with wiretrap cable gland. Allows the stacked installation of switches.

Article	Description	Protection degree
VF MKCV11	Protective terminal cover without gasket for multipolar cables from $\varnothing 5$ to $\varnothing 7.5 \mathrm{~mm}$	IP40
VF MKCV12	Protective terminal cover without gasket for multipolar cables from $\varnothing 4$ to $\varnothing 7.5 \mathrm{~mm}$	IP40
VF MKCV13	Protective terminal cover without gasket for multipolar cables from $\varnothing 2$ to $\varnothing 5.5 \mathrm{~mm}$	IP40
VF MKCV22	Protective terminal cover with gasket for multipolar cables from $\varnothing 4$ to $\varnothing 7.5 \mathrm{~mm}$	IP65
VF MKCV23	Protective terminal cover with gasket for multipolar cables from $\varnothing 2$ to $\varnothing 5.5 \mathrm{~mm}$	IP65



10 pcs. packs


Protective terminal cover for vertical faston terminals with wiretrap cable gland, snap-in attachment. Allows the stacked installation of switches.

Article	Description	Protection   degree
VF MKCH11	Protective terminal cover without gasket   for multipolar cables from $\varnothing 5$ to $\varnothing 7.5 \mathrm{~mm}$	IP40
VF MKCH12	Protective terminal cover without gasket   for multipolar cables from $\varnothing 4$ to $\varnothing 7.5 \mathrm{~mm}$	IP40
VF MKCH13	Protective terminal cover without gasket   for multipolar cables from $\varnothing 2$ to $\varnothing 5.5 \mathrm{~mm}$	IP40
VF MKCH22	Protective terminal cover with gasket for   multipolar cables from $\varnothing 4$ to $\varnothing 7.5 ~ m m$	IP65
VF MKCH23	Protective terminal cover with gasket for   multipolar cables from $\varnothing 2$ to $\varnothing 5.5 ~ m m ~$	IP65



Article $\quad$ VF C03 | Protective terminal cover for |
| :--- |
| terminals, snap-in attachment. Allows the |
| stacked installation of switches |$\quad$ IP20





Technical concepts page 157


Position switches FD / FL series
page 159 / 165

C) Product code exten- ATEX/EPL category									
Category	Zone	EPL	Approvals	sion	M2/Mb	2G/Gb	2D/Db	36/Gc	3D/Dc
$\begin{aligned} & \text { 2G } \\ & \text { M2 } \end{aligned}$	$\begin{gathered} 1 \\ \text { M2 } \end{gathered}$	$\begin{aligned} & \text { Gb } \\ & \text { Mb } \end{aligned}$	(Ex) II 2G Ex ia IICT6 Gb   [8] I M2 Exial Mb	-EX7	$\square$	$\square$	-	$\square$	-
Position switches FM series					page 171				
23.10 Product code exten- ATEX/EPL category									
Category	Zone	EPL	Approvals	sion	M2/Mb	6/Gb	2D/Db	3G/Gc	3D/Dc
$\begin{aligned} & \text { 2G } \\ & \text { M2 } \end{aligned}$	$\begin{gathered} 1 \\ \text { M2 } \end{gathered}$	$\begin{aligned} & \text { Gb } \\ & \text { Mb } \end{aligned}$	(Ex) II 2G Ex ia IIC T6 Gb   (Ex I M2 Ex ial Mb	-EX7	■	$\square$	-	$\square$	-

Position switches FD / FL series
page 177 / 183


Prewired position switches FA series
page 189

Category	Zone	EPL	Approvals	Product code extension	ATEX/EPL category					
					M2/Mb	2G/Gb	2D/Db	3G/Gc	3D/Dc	
$\begin{aligned} & \text { 3D } \\ & \text { 3G } \end{aligned}$	$\begin{gathered} 22 \\ 2 \end{gathered}$	$\begin{aligned} & \text { Dc } \\ & \text { Gc } \end{aligned}$	§ $\varepsilon_{x} \\| 3$ Extc IIICT $80^{\circ} \mathrm{CDc}$   (Ex) II 3G Ex nC IICT6 Gc	-EX5	-	-	-	$\square$	$\square$	

Position switches FD / FL series
page 193 / 199


Accessories
page 205


## ATEX Directive

The ATEX mark ( Atmospheres Explosives) refers to two European directives concerning the risk of deflagration in potentially explosive atmospheres:

- ATEX 94/9/EC: concerns the requirements for electrical and non-electrical equipment used in potentially explosive environments. According to this directive the manufacturer has to comply with the provided requirements and mark the articles in conformity with particular categories
- ATEX 99/92/EC: regards the minimum safety and sanitary requirements that the user has to satisfy during the activity in potentially explosive environments.
These directives determine the requirements for the safety and health protection of people, animals and property and carry several procedures for the conformity demonstration of equipment to the directive requirements.


## Classification of potentially explosive atmospheres.

A potentially explosive atmosphere is an atmosphere that could become explosive according to the local conditions of work. Usually it consists in environments where it is present a mixture of air and flammable substances in the form of gas, smog, steams and dusts.
The ATEX 99/92/EC directive defines for two types of explosive atmosphere, depending on the presence in the zone of gases or combustible dusts. Each area exposed to these types of explosive atmospheres is classified in three zones, according to the frequency and duration of the explosive atmosphere. For atmospheres with explosive gas, areas are classified in zones 0,1 and 2 ; for atmosphere with explosive dusts in zones 20, 21 and 22:

- Zone $\mathbf{0 / 2 0}$ : a place where gas or combustible dust is present permanently. Constant danger. Equipment of minimum category 1 is required.
- Zone 1/21 : a place where gas or combustible dust is likely to occur during normal operation. Potential danger. Equipment of minimum category 2 is required.
Zone 2/22 : a place where gas or combustible dust is unlikely to occur or only for a short period. Lower danger. Equipment of minimum category 3 is required.
It's under the responsibility of the final user to choose and classify the different zones and to use suitable equipments.


## Device categories acc. to ATEX directive and IEC standards

ATEX 94/9/CE directive distinguishes equipment between two main groups:

- Group I: equipment and systems for mining

Group II: equipment and systems for all other applications
Equipment of the group I is divided in two further categories according to the required protection degree:
Category M1: Equipment designed to assure a very high protection level
Category M2: Equipment designed to assure a high protection level
Equipment of the group II is divided in three further categories according to the required protection degree:

- Category 1: Equipment designed to assure a very high protection level (use in zones 0 and 20, 1 and 21, 2 and 22)
- Category 2: Equipment designed to assure a high protection level (use in zones 1 and 21, 2 and 22)
- Category 3: Equipment designed to assure a normal protection level (use in zones 2 and 22)

The relation between the EPL (Equipment Protection Levels) of the IEC 60079-0 standard, and the categories and applications of the ATEX directive are shown in the table below.

Table 1 - Classification of the environment and device according to ATEX directive and IEC 60079-0 standard

Environment characteristics				Equipment characteristics			
Environment of application	Flammable material	Potentially explosive atmosphere	Classification of potentially explosive atmospheres: ZONE	acc. to ATEX 94/9/EC		$\begin{gathered} \text { acc. to } \\ \text { IEC 60079-0 } \end{gathered}$	
				Required marking of the device: CATEGORY	Required marking of the device: GROUP	EPL	Required protection level
Mining				M1	I	Ma	very high
				M2		Mb	high
Above ground	Gas	It is present continuously, for long periods or frequently	0	1G	II	Ga	very high
		It is likely to occur	1	2G		Gb	high
		It is unlikely to occur or, if it does, is likely to do infrequently and for a short period only	2	3G		Gc	normal
	Dusts	It is present continuously, for long periods or frequently	20	1D		Da	very high
		It is likely to occur	21	2D		Db	high
		It is unlikely to occur or, if it does, is likely to do infrequently and for a short period only	22	3D		Dc	normal

## Protection modes

In order to avoid an explosion caused by the electrical ignition of an explosive atmosphere, it is possible to take different type of precautions:

- Isolate the dangerous parts into housing in order to limit the explosion inside itself.
- Avoid contact between ignition sources and the potentially explosive atmosphere interposing solid, liquid or gaseous materials.
- Take measures in order to limit the generation of dangerous ignition sources, eliminating the possibility of faults or limiting the energy so it's not sufficient to cause the ignition.
For each modality several methods of protection have been developed and standardized, as listed in the following table.
Table 2 - Protection methods and reference standards

Protection method	Symbol	Engraving	Zone of utilization GAS	Zone of utilization DUSTS	IEC / EN standards
General requirements	/	/	0, 1, 2	20, 21, 22	$\begin{aligned} & \text { IEC 60079-0 } \\ & \text { EN 60079-0 } \end{aligned}$
Oil immersion		Exo	1.2	1	IEC 60079-6 EN 60079-6
Pressurization		$\begin{aligned} & \text { Expx } \\ & \text { Expy } \\ & \text { Expz } \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 21 \\ & 21 \\ & 22 \end{aligned}$	IEC 60079-2   EN 60079-2
Powder filling	-1	Exq	1.2	1	$\begin{aligned} & \text { IEC 60079-5 } \\ & \text { EN 60079-5 } \end{aligned}$
Flameproof		Exd	1.2	1	IEC 60079-1 EN 60079-1
Increased safety		Exe	1.2	1	$\begin{aligned} & \text { IEC 60079-7 } \\ & \text { EN 60079-7 } \end{aligned}$
Intrinsic safety	$\square$	Ex ia   Ex ib   Ex ic	$\begin{aligned} & 0 \\ & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 20 \\ & 21 \\ & 22 \end{aligned}$	IEC 60079-11   EN 60079-11
Encapsulation	$t$	Ex ma   Ex mb   Ex mo	$\begin{aligned} & 0 \\ & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 20 \\ & 21 \\ & 22 \end{aligned}$	IEC 60079-18   EN 60079-18
Non sparking		ExnA   ExnC   ExnR	$\begin{aligned} & 2 \\ & 2 \\ & 2 \end{aligned}$	1	IEC 60079-15 EN 60079-15
Protective housing		Exta   Extb   Extc	1	$\begin{aligned} & 20 \\ & 21 \\ & 22 \end{aligned}$	$\begin{aligned} & \text { IEC 60079-31 } \\ & \text { EN 60079-31 } \end{aligned}$
Optical radiation		Ex op	0,1,2	1	IEC 60079-28   EN 60079-28

Marking examples
Devices for places with presence of gas

## 〔欧 II 2G Ex ia IICT6 Gb <br> (1) <br> (2) (3) (4)

(1) Community marking
(2) Equipment group (see table 1)
(3) Protection category (see table 1)
(4) Prefix for safety devices according to the IEC / EN standards
(5) Protection mode (see table 2)
(6) Classification of gases (see table 4)
(7) Temperature class (see table 3)
(8) EPL according to IEC 60079-0 standard (see table 1)

## Devices for places with presence of dusts

## (Ex) II 3D Ex tc IIIC $\mathbf{T 8 0 ^ { \circ }}{ }^{\circ} \mathrm{CDc}$

(1) (2)

Community mav
(2) Equipment group (see table 1)
(3) Protection category (see table 1 )
(4) Prefix for safety devices according to the IEC / EN standards
(5) Protection mode (see table 2)
(6) Classification of dusts (see table 5)
(7) Maximum surface temperature of the equipment
(8) EPL according to IEC 60079-0 standard (see table 1)

Temperature classes
Table 3

Class	T 1	T 2	T 3	T 4	T 5	T 6
Maximum surface   temperature   of the device	$450^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$	$200^{\circ} \mathrm{C}$	$135^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$


Classification of gases			Table 4 excerpt standard IEC 505	
	I	IIA	IIB	IIC
T1	methane	propane, methane, ethane, benzene, ammoniac, acetic acid, carbon monoxide, methanol, toluene	acrylonitrile	hydrogen
T2		ethanol, amyl acetate, butane	ethylene	acetylene
T3		naphtha, benzene, hexane	hydrogen sulfide	
T4		acetaldehyde	ethyl ether	
T5				
T6				carbon bisulphide
Classification of dust				Table 5
IIIA		IIIB		IC
combustible particles		non-conductive powder	conducti	ve powder



## Main features

- Approvals:


## Category 2G and M2

- Metal housing, one conduit entry
- Protection degree IP66
- Versions with gold-plated silver contacts


## ATEX markings and quality labels:

C
(Ex) II 2G Ex ia IIC T6 Gb
$\varepsilon_{\chi x}$ I M2 Ex ia I Mb

## Technical data

## Housing

Metal housing, baked powder coating

One threaded conduit entry:
Protection degree:
M20x1.5
IP66 according to EN 60529 with cable gland having equal or higher protection degree

## General data

General data	
Ambient temperature:	$-20^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C}$
Max. actuation frequency:	3600 operating cycles ${ }^{1} /$ hour
Mechanical endurance:	
F•••••-EX•	10 million operating cycles ${ }^{1}$
F• ••93-EX $, ~ F \bullet \bullet \cdot 78-E X \bullet, ~ F \bullet \bullet \bullet 8 \bullet-E X \bullet, ~ F \bullet \bullet \bullet 95-E X \bullet ~$	500.000 operating cycles ${ }^{1}$
F•••99-EX•, F•••R2-EX•	250.000 operating cycles ${ }^{1}$
Mounting position:	any

Mounting position:
Safety parameters $\mathrm{B}_{10 \mathrm{~d}}$ (NC contacts):
F•••••-EX•
F•••93-EX $\bullet$,F $\bullet \bullet 78-E X \bullet, F \bullet \bullet \bullet 8 \bullet-E X$
F•••99-EX•, F•••R2-EX•
F•••95-EX•
Mechanical interlock, not coded:
Tightening torques for installation:
(1) One operation cycle means two movements, one to close and one to open contacts, as defined in EN 60947-5-1.

Cable cross section (flexible copper strands)
Contact blocks 20,28:
Contact block 5

min.	$1 \times 0.34 \mathrm{~mm}^{2}$	$(1 \times$ AWG 22)
$\max$.	$2 \times 1.5 \mathrm{~mm}^{2}$	$(2 \times$ AWG 16)
$\min$.	$1 \times 0.5 \mathrm{~mm}^{2}$	$(1 \times$ AWG 20$)$
$\max$.	$2 \times 2.5 \mathrm{~mm}^{2}$	$(2 \times$ AWG 14)

## In conformity with standards:

IEC 60947-5-1, EN 60947-5-1, EN 60947-1, EN 50041, IEC 60204-1, EN 60204-1,
EN ISO 14119, EN ISO 12100, IEC 60529, EN 60529, UL 508, CSA 22.2 No.14, IEC 60079-0, EN 60079-0, IEC 60079-11, EN 60079-11.

In conformity with the requirements of:
ATEX Directive 94/9/EC
Low Voltage Directive 2006/95/EC, Machinery Directive 2006/42/EC and EMC Directive 2004/108/EC.
Positive contact opening in conformity with standards:
IEC 60947-5-1, EN 60947-5-1.

Installation for safety applications:
Use only switches marked with the symbol $\Theta$ aside the product code. Always connect the safety circuit to the NC contacts (normally closed contacts: 11-12, 21-22 or 31-32) as stated in standard EN 60947-5-1, encl. K, par. 2. Actuate the switch at least up to the positive opening travel shown in the travel diagrams on page 238. Operate the switch at least with the positive opening force, indicated between brackets below each article, aside the minimum force value.
§ If not expressly indicated in this chapter, for correct installation and utilization of all articles see chapter utilization requirements from page 235 to page 246.

Category	Zone	EPL	Approvals	Product code extension
2G	1	Gb	\Ex II 2G Ex ia IICT6 Gb	
M2	M2	Mb	$\varepsilon_{x} / 1$ M2 Ex ia I Mb	

## Electrical data

Maximum current (ii): $\quad 2.1 \mathrm{~A}$
Maximum voltage (Ui):
Conditional short circuit current: Protection against short circuits:

30 Vdc
1000 A according to EN 60947-5-1
Pollution degree:
fuse 4 A 250 V type gG
§ This type of switches must be used only in intrinsic safety circuits in conformity with standard IEC 60079-11, EN 60079-11
$\widehat{4}$ For the correct utilization of the switch please use cable glands suitable for the zone according to the ATEX directive

## Quality marks of the product:

## © (1)w EH[

$\begin{array}{ll}\text { UL approval: } & \text { E131787 } \\ \text { EAC approval: } & \text { RU C-IT ДM94.B. } 01024\end{array}$

## Characteristics approved by UL

Utilization categories Q300 (69 VA, 125 ... 250 Vdc )

$$
\text { A600 ( } 720 \mathrm{VA}, 120 \ldots 600 \mathrm{Vac} \text { ) }
$$

Data of housing type $1,4 \mathrm{X}$ "indoor use only", 12, 13
For all contact blocks except 2 and 3 use 60 or $75^{\circ} \mathrm{C}$ copper ( Cu ) conductor rigid or flexible, wire size AWG 12/14. Terminal tightening torque of 7.1 lb in (0.8 Nm).

For contact blocks 2 and 3 use 60 or $75^{\circ} \mathrm{C}$ copper ( Cu ) conductor, rigid or flexible, wire size AWG 14. Terminal tightening torque of 12 lb in ( 1.4 Nm ).

In conformity with standard: UL 508, CSA 22.2 No. 14
Please contact our technical service for the list of approved products.

## Adjustable levers

In the switches it is possible to adjust the lever with $10^{\circ}$ steps for the whole $360^{\circ}$ range. The positive movement transmission


## Overturning levers

In the switches, the lever can be fastened straight or reversed, maintaining the positive coupling.
This makes it possible to have two different work plans of the lever.


## Orientable heads

In all switches, it is possible to rotate the


## Unidirectional heads

For switches with swivelling lever, it is possible to select the unidirectional operation by removing the four screws of the head and revolving the internal plunger.


## Code structure



Contact blocks
5 1NO+1NC, snap action
11 2NC, snap action
12 2NO, snap action
20 1NO+2NC, slow action
21 3NC, slow action
22 2NO+1NC, slow action

ATEX approval
Exx II 2G Ex ia IICT6 Gb
$\varepsilon_{x} /$ I M2 Ex ial Mb

Threaded conduit entry
M2 M20x1.5

Contact type
01 short plunger
02 roller lever
silver contacts (standard)
G
silver contacts with $1 \mu \mathrm{~m}$ gold coating

With external rubber gasket
Contact blocks

	With external rubber gasket	With external rubber gasket	Bistable	Rope switch for signalling
Contact blocks				
5 R	FD 521-M2-EX7 1NO+1NC	FD 525-M2-EX7 1NO+1NC	FD 541-M2-EX7 $\Theta$ 1NO+1NC	FD 576-M2-EX7 1NO+1NC
20 L	FD 2021-M2-EX7 1NO+2NC	FD 2025-M2-EX7 1NO+2NC		FD 2076-M2-EX7 2NO+1NC
Max. speed	$1 \mathrm{~m} / \mathrm{s}$	$1 \mathrm{~m} / \mathrm{s}$	$0.5 \mathrm{~m} / \mathrm{s}$ with cam at $30^{\circ}$	$0.5 \mathrm{~m} / \mathrm{s}$
Min. force	0.08 Nm	0.14 Nm	$0.21 \mathrm{Nm}(0.36 \mathrm{Nm} \Theta)$	initial 20 N - final 40 N
Travel diagrams	page 238 - group 3	page 238 - group 3	page 238 - group 4	page 238 - group 6


Code	Approvals	Category	Zone	EPL
-EX7	$\varepsilon_{x}$ II 2G Ex ia IICT6 Gb	2G	1	Gb
	\&x 1 M2 Ex ial Mb	M2	M2	Mb

Position switches with revolving lever without actuator
Contact type:

| $\mathbf{R}=$ shap a action |
| :--- | :--- |
| $\mathbf{L}=$ slow action |

Regular head

## IMPORTANT

For safety applications: join only switches and actuators marked with symbol $\Theta$ aside the product code.
For more information about safety applications see details on page 235.

Loose actuators					All measures in the drawings are in mm	
IMPORTANT: These loose actuators can be used with items of the FD series only.						
	Technopolymer roller $\varnothing 20$ mm	Adjustable round rod Ø $3 \times 125 \mathrm{~mm}$	Adjustable square rod $3 \times 3 \times 125 \mathrm{~mm}$	Flexible rod with pointed end	Adjustable actuator with technopolymer roller	Adjustable fiber glass rod
Article	VF L31 $\Theta$	VF L32 ${ }^{(2)}$	VF L33 ${ }^{(2)}$	VF L34	VF L35 $\Theta{ }^{(1)(2)}$	VF L36 ${ }^{(2)}$
Max. speed	$1.5 \mathrm{~m} / \mathrm{s}$ (cam at $30^{\circ}$ )	$1.5 \mathrm{~m} / \mathrm{s}$	$1.5 \mathrm{~m} / \mathrm{s}$	$1 \mathrm{~m} / \mathrm{s}$	$1.5 \mathrm{~m} / \mathrm{s}$ (cam at $30^{\circ}$ )	$1.5 \mathrm{~m} / \mathrm{s}$
	Technopolymer roller $\varnothing 20 \mathrm{~mm}$	Technopolymer roller $\varnothing 20 \mathrm{~mm}$	Porcelain roller	Adjustable safety actuator with technopolymer roller	Technopolymer roller $\varnothing 20 \mathrm{~mm}$	
Article	VF L51 $\Theta$	VF L52 $\Theta$	VF L53 $\Theta$	VF L56 $\underbrace{(2)}$	VF L57 $\Theta$	
Max. speed	$1.5 \mathrm{~m} / \mathrm{s}$ (cam at $30^{\circ}$ )	$1.5 \mathrm{~m} / \mathrm{s}$ (cam at $30^{\circ}$ )	$0.5 \mathrm{~m} / \mathrm{s}$	$1.5 \mathrm{~m} / \mathrm{s}$ (cam at $30^{\circ}$ )	$1.5 \mathrm{~m} / \mathrm{s}$ (cam at $30^{\circ}$ )	
Stainless steel rollers, $\varnothing 20$ mm						
Article	VF L31-R24 $\Theta$	VF L35-R24 $\Theta{ }^{(1)(2)}$	VF L51-R24 $\Theta$	VF L52-R24 $\Theta$	VF L56-R24 $\Theta{ }^{(2)}$	VF L57-R24 $\Theta$
Max. speed	$1.5 \mathrm{~m} / \mathrm{s}$ (cam at $30^{\circ}$ )	$1.5 \mathrm{~m} / \mathrm{s}$ (cam at $30^{\circ}$ )	$1.5 \mathrm{~m} / \mathrm{s}$ (cam at $30^{\circ}$ )	$1.5 \mathrm{~m} / \mathrm{s}$ (cam at $30^{\circ}$ )	$1.5 \mathrm{~m} / \mathrm{s}$ (cam at $30^{\circ}$ )	$1.5 \mathrm{~m} / \mathrm{s}$ (cam at $30^{\circ}$ )

- (1) Actuator VF L35 can only be used in safety applications if adjusted to its max. length, as shown in figure beside.

If you need an adjustable lever for safety applications, use the adjustable safety lever VF L56.
${ }^{(2)}$ If installed with switch FD $\bullet 58-M 2-E X 7$ (e.g. FD 558-M2-EX7, FD 658-M2-EX7...) the actuator could mechanically interfere with the housing of the switch. The interference could happen or not according to the actuator and the head fixing position.


Safety switches with separate actuator
All measures in the drawings are in mm

Contact type:	Switches with separate actuator	Switches with separate actuator and key release	Switches with manual mechanical delay
Contact blocks	Switches without actuator	Switches without actuator	Switches without actuator
20 $L$   28 $L$	FD 2093-M2-EX7 $\Theta 1$ NO+2NC	FD 2099-M2-EX7 FD 2899-M2-EX7 ¢ 1NO+2NC	FD 20R2-M2-EX7 $\Theta 1 \mathrm{NO}+2 \mathrm{NC}$
Min. force Travel diagrams Gen. Cat. Safety	$\left.\begin{array}{c}10 \mathrm{~N}(18 \mathrm{~N} \Theta\end{array}\right)$	$30 \mathrm{~N}(40 \mathrm{~N} \Theta)$ page 140	$10 \mathrm{~N}(18 \mathrm{~N} \Theta)$ page 132

Actuators

VF KEYF	VF KEYF1	VF KEYF2	VF KEYF3	VF KEYF7	VF KEYF8
Straight actuator	Angled actuator	Swivelling actuator	Actuator adjustable in two directions	Actuator adjustable in one direction	Universal actuator

IMPORTANT: These actuators can be used with items of the FD series only (e.g. FD 2093-M2-EX7).
Low level coded actuators according to EN ISO 14119.

## Safety switches for hinges

Contact type:	
L = slow action	
Contact blocks	
20 L	FD 2095-M2-EX7 $\Theta$ 1NO+2NC
Min. force	0,15 Nm (0,4 Nm $\Theta$ )
Travel diagrams Gen. Cat. Safety	page 75

§ If not expressly indicated in this chapter, for correct installation and utilization of all articles see chapter utilization requirements from page 235 to page 246.


## Safety rope switch with reset for emergency stops

Contact type: $\mathbf{L}=\text { slow action }$			
20 L	FD 2078-M2-EX7 $\Theta$ 1NO+2NC	FD 2083-M2-EX7 $\Theta$ 1NO+2NC	FD 2084-M2-EX7 $\Theta$ 1NO+2NC
Min. force	initial $63 \mathrm{~N} . .$. final $83 \mathrm{~N}(90 \mathrm{~N} \Theta$ )	initial 147 N ....final $235 \mathrm{~N}(250 \mathrm{~N} \Theta)$	initial $147 \mathrm{~N} . .$. final $235 \mathrm{~N}(250 \mathrm{~N} \Theta)$
Travel diagrams Gen. Cat. Safety	page 171-group 1	page 171-group 2	page 171-group 2

## Accessories for rope installation

VF AF-TR5	VF AF-TR8	VF AF-MR5	VF AF-ME78	VF AF-ME80	VF F05-100	VF AF-IF1GR03	VF AF-CA5	VF AF-CA10
Adjustable stay bolt	Stay bolt	End clamp	Safety spring for longitudinal head	Safety spring for transversal head	$\begin{aligned} & \text { Rope, } \varnothing 5 \\ & \text { mm. } \\ & 100 \mathrm{~m} \text { rolls } \end{aligned}$	Function indicator for ropes. Text "STOP"	Stainless steel pulley	Angular pulley, stainless steel

## Application examples and max. rope length


© If not expressly indicated in this chapter, for correct installation and utilization of all articles see chapter utilization requirements from page 235 to page 246.

Code	Approvals	Category	Zone	EPL
-EX7	Exx II 2G Ex ia IIC T6 Gb	2G	1	Gb
	Ex 1 M 2 Ex ial Mb	M2	M2	Mb



## Main features

- Approvals:


## Category 2G and M2

- Metal housing, three conduit entries
- Protection degree IP66
- Versions with gold-plated silver contacts


## ATEX markings and quality labels:

C
(Ex) II 2G Ex ia IIC T6 Gb
〔 $\underbrace{}_{x}$ I M2 Ex ia I Mb

## Technical data

## Housing

Metal housing, baked powder coating
Three threaded conduit entries:
M20x1.5
Protection degree:
IP66 according to EN 60529
with cable gland having equal or higher protection degree

## General data

Ambient temperature:	$-20^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C}$
Max. actuation frequency:	3600 operating cycles ${ }^{1} /$ hour
Mechanical endurance:	

.
F•••••-EX•
10 million operating cycles ${ }^{1}$
F•••93-EX $\bullet$ F $\bullet \bullet \cdot 78-E X \bullet, F \bullet \bullet \bullet 8 \bullet-E X \bullet, F \bullet \bullet \bullet 95-E X \bullet 500.000$ operating cycles 1
Mounting position:
any
Safety parameters $\mathrm{B}_{10 \mathrm{~d}}$ (NC contacts):
F•••••-EX• 20,000,000
F•••93-EX $\bullet$ F $\bullet \bullet 78-E X \bullet, F \bullet \bullet \bullet 8 \bullet-E X \quad 1,000,000$
F•••95-EX•
Mechanical interlock, not coded:
2,500,00
Tightening torques for installation:
type 1 according to EN ISO 14119
see pages 235-246
(1) One operation cycle means two movements, one to close and one to open contacts, as defined in EN 60947-5-1.

Cable cross section (flexible copper strands)
Contact block 20:
Contact block 5:

$\min$.	$1 \times 0.34 \mathrm{~mm}^{2}$	$(1 \times$ AWG 22)
$\max$.	$2 \times 1.5 \mathrm{~mm}^{2}$	$(2 \times A W G 16)$
$\min$.	$1 \times 0.5 \mathrm{~mm}^{2}$	$(1 \times$ AWG 20)
$\max$.	$2 \times 2.5 \mathrm{~mm}^{2}$	$(2 \times$ AWG 14)

## In conformity with standards:

IEC 60947-5-1, EN 60947-5-1, EN 60947-1, EN 50041, IEC 60204-1, EN 60204-1, EN ISO 14119, EN ISO 12100, IEC 60529, EN 60529, UL 508, CSA 22.2 No.14, IEC 60079-0, EN 60079-0, IEC 60079-11, EN 60079-11.

## In conformity with the requirements of:

ATEX Directive 94/9/EC
Low Voltage Directive 2006/95/EC, Machinery Directive 2006/42/EC and
EMC Directive 2004/108/EC.
Positive contact opening in conformity with standards:
IEC 60947-5-1, EN 60947-5-1.

Installation for safety applications:
Use only switches marked with the symbol $\Theta$ aside the product code. Always connect the safety circuit to the NC contacts (normally closed contacts: 11-12, 21-22 or 31-32) as stated in standard EN 60947-5-1, encl. K, par. 2. Actuate the switch at least up to the positive opening travel shown in the travel diagrams on page 238. Operate the switch at least with the positive opening force, indicated between brackets below each article, aside the minimum force value.
§ If not expressly indicated in this chapter, for correct installation and utilization of all articles see chapter utilization requirements from page 235 to page 246.

Category	Zone	EPL	Approvals	Product code   extension
2G	$\mathbf{1}$	$\mathbf{G b}$	$\varepsilon_{x} /$ II 2G Exia IICT6 Gb	-EX7
M2	$\mathbf{M 2}$	$\mathbf{M b}$	$\varepsilon_{x} /$ I M2 Exial Mb	

## Electrical data

Maximum current (ii): $\quad 2.1 \mathrm{~A}$

Maximum voltage (Ui):
Conditional short circuit current: Protection against short circuits: Pollution degree:

30 Vdc
1000 A according to EN 60947-5-1
fuse 4 A 250 V type gG
3

〔 This type of switches must be used only in intrinsic safety circuits in conformity with standard IEC 60079-11, EN 60079-11 § For the correct utilization of the switch please use cable glands suitable for the zone according to the ATEX directive

## Quality marks of the product:

## © (1)w EH[

$\begin{array}{ll}\text { UL approval: } & \text { E131787 } \\ \text { EAC approval: } & \text { RU C-IT ДM94.B. } 01024\end{array}$

## Characteristics approved by UL <br> Utilization categories Q300 (69 VA, 125 ... 250 Vdc ) <br> $$
\text { A600 ( } 720 \mathrm{VA}, 120 \ldots 600 \mathrm{Vac} \text { ) }
$$ <br> Data of housing type $1,4 \mathrm{X}$ "indoor use only", 12,13 <br> For all contact blocks except 2 and 3 use 60 or $75^{\circ} \mathrm{C}$ copper ( Cu ) conductor rigid or flexible, wire size AWG $12 / 14$. Terminal tightening torque of 7.1 lb in (0.8 Nm). <br> For contact blocks 2 and 3 use 60 or $75^{\circ} \mathrm{C}$ copper ( Cu ) conductor, rigid or flexible, wire size AWG 14. Terminal tightening torque of 12 lb in (1.4 Nm). <br> In conformity with standard: UL 508, CSA 22.2 No. 14 <br> Please contact our technical service for the list of approved products.

## Adjustable levers

For switches with swivelling lever the lever can be adjusted in $10^{\circ}$ steps over the entire $360^{\circ}$ range. The positive movement
 transmission is always guaranteed thanks to the particular geometrical coupling between the lever and the revolving shaft as prescribed for safety applications by the German standard BG-GS-ET-15

## Overturning levers

For switches with swivelling lever the lever can be fastened straight or reversed, maintaining the positive coupling.
This makes it possible to have two different work plans of the lever.


## Orientable heads

In all switches, it is possible to rotate the head in $90^{\circ}$ steps.


## Unidirectional heads

For switches with swivelling lever, it is possible to select the unidirectional operation by removing the four screws of the head and revolving the internal plunger (contact block 16 excluded).


## Code structure




Contact blocks	With external rubber gasket			With external rubber gasket
5 R	FL 515-M2-EX7 $\Theta$ 1NO+1NC	FL 516-M2-EX7 $\Theta$ 1NO+1NC	FL 519-M2-EX7 $\Theta$ 1NO+1NC	FD 520-M2-EX7 1NO+1NC
20 L	FL 2015-M2-EX7 $\Theta$ 1NO+2NC	FL 2016-M2-EX7 $\Theta$ 1NO+2NC	FL 2019-M2-EX7 $\Theta$ 1NO+2NC	FD 2020-M2-EX7 1NO+2NC
Max. speed	$0.5 \mathrm{~m} / \mathrm{s}$ with cam at $30^{\circ}$	$0.5 \mathrm{~m} / \mathrm{s}$ with cam at $30^{\circ}$	$0.5 \mathrm{~m} / \mathrm{s}$	$1 \mathrm{~m} / \mathrm{s}$
Min. force	$11 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$8 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$8 \mathrm{~N}(25 \mathrm{~N} \Theta)$	0.09 Nm
Travel diagrams	page 238 - group 1	page 238 - group 1	page 238 - group 1	page 238 - group 3


	With external rubber gasket	With external rubber gasket	Bistable	Rope switch for signalling
Contact blocks				
5 R	FL 521-M2-EX7 1NO+1NC	FL 525-M2-EX7 1NO+1NC	FL 541-M2-EX7 $\Theta$ 1NO+1NC	FL 576-M2-EX7 1NO+1NC
20 L	FL 2021-M2-EX7 1NO+2NC	FL 2025-M2-EX7 1NO+2NC		FL 2076-M2-EX7 2NO+1NC
Max. speed	$1 \mathrm{~m} / \mathrm{s}$	$1 \mathrm{~m} / \mathrm{s}$	$0.5 \mathrm{~m} / \mathrm{s}$ with cam at $30^{\circ}$	$0.5 \mathrm{~m} / \mathrm{s}$
Min. force	0.08 Nm	0.14 Nm	$0.21 \mathrm{Nm}(0.36 \mathrm{Nm}$ - $)$	initial 20 N - final 40 N
Travel diagrams	page 238 - group 3	page 238 - group 3	page 238 - group 4	page 238 - group 6

All measures in the drawings are in mm

Code   -EX7	Approvals	Category	Zone	EPL
	$\varepsilon_{x}$ II 2G Ex ia IICT6 Gb	2G	1	Gb
	\&x $1 / \mathrm{M} 2 \mathrm{Ex}$ ia I Mb	M2	M2	Mb
Accessories See page 225		$\rightarrow$ The 2D/3D files are available at www.pizzato.com		

Position switches with revolving lever without actuator


IMPORTANT
For safety applications: join only switches and actuators marked with symbol $\Theta$ aside the product code.
For more information about safety applications see details on page 235.


- ${ }^{(1)}$ Actuator VF L35 can only be used in safety applications if adjusted to its max. length, as shown in figure beside.

If you need an adjustable lever for safety applications, use the adjustable safety lever VF L56.
${ }^{(2)}$ If installed with switch FL $\bullet 58-\mathrm{M} 2-\mathrm{EX7}$ (e.g. FL 558-M2-EX7, FL 658-M2-EX7...) the actuator could mechanically interfere with the housing of the switch. The interference could happen or not according to the actuator and the head fixing position.


Safety switches with separate actuator


## Actuators

|  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VF KEYF | VF KEYF1 | VF KEYF2 | VF KEYF3 | VF KEYF7 | VF KEYF8 |
| Straight actuator | Angled actuator | Swivelling actuator | Actuator adjustable in <br> two directions | Actuator adjustable in <br> one direction | Universal actuator |

IMPORTANT: These actuators can be used with items of the FL series only (e.g. FL 2093-M2-EX7).
Low level coded actuators according to EN ISO 14119.

## Safety switches for hinges


§ If not expressly indicated in this chapter, for correct installation and utilization of all articles see chapter utilization requirements from page 235 to page 246.


## Safety rope switch with reset for emergency stops

Contact type: $\mathbf{L}=\text { slow action }$			
20 L	FL 2078-M2-EX7 $\Theta$ 1NO+2NC	FL 2083-M2-EX7 $\Theta$ 1NO+2NC	FL 2084-M2-EX7 $\Theta$ 1NO+2NC
Min. force	initial 63 N ...final $83 \mathrm{~N}(90 \mathrm{~N} \Theta)$	initial 147 N ...final $235 \mathrm{~N}(250 \mathrm{~N} \Theta)$	initial 147 N ....final $235 \mathrm{~N}(250 \mathrm{~N} \Theta)$
Travel diagrams Gen. Cat. Safety	page 171-group 1	page 171-group 2	page 171-group 2

## Accessories for rope installation

$3$								
VF AF-TR5	VF AF-TR8	VF AF-MR5	VF AF-ME78	VF AF-ME80	VF F05-100	VF AF-IF1GR03	VF AF-CA5	VF AF-CA10
Adjustable stay bolt	Stay bolt	End clamp	Safety spring for longitudinal head	Safety spring for transversal head	$\begin{aligned} & \text { Rope, } \varnothing 5 \\ & \mathrm{~mm} \text {. } \\ & 100 \mathrm{~m} \text { rolls } \end{aligned}$	Function indicator for ropes. Text "STOP"	Stainless steel pulley	Angular pulley, stainless steel

## Application examples and max. rope length


© If not expressly indicated in this chapter, for correct installation and utilization of all articles see chapter utilization requirements from page 235 to page 246.

Code	Approvals	Category	Zone	EPL
-EX7	§x II 2G Ex ia IICT6 Gb	2G	1	Gb
	¢ 1 M 2 Ex ial Mb	M2	M2	Mb



## Main features

- Approvals:

Category 2G and M2

- Metal housing, one conduit entry
- Protection degree IP67
- Versions with gold-plated silver contacts


## ATEX markings and quality labels:

C
(Ex) II 2G Ex ia IIC T6 Gb
〔 I M2 Ex ia I Mb

## Technical data

## Housing

Metal housing, baked powder coating
One threaded conduit entry:
Protection degree:
M20×1.5
IP67 according to EN 60529 with cable gland having equal or higher protection degree

## General data

Ambient temperature: $-20^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C}$
Max. actuation frequency:
Mechanical endurance:
F•••••-EX•
F•••C•EX•F•••96-EX•
Mounting position: Safety parameters $\mathrm{B}_{10 \mathrm{~d}}$ (NC contacts):
F•••••-EX•
F•••C•EX•
F•••96-EX•
Mechanical interlock, not coded:
Tightening torques for installation:
(1) One operation cycle means two movements, one to close and one to open contacts, as defined in EN 60947-5-1.

## Cable cross section (flexible copper strands)

Contact block 20:

$\min$.	$1 \times 0.34 \mathrm{~mm}^{2}$	$(1 \times$ AWG 22)
$\max$.	$2 \times 1.5 \mathrm{~mm}^{2}$	$(2 \times$ AWG 16)
$\min$.	$1 \times 0.5 \mathrm{~mm}^{2}$	$(1 \times$ AWG 20)
$\max$.	$2 \times 2.5 \mathrm{~mm}^{2}$	$(2 \times$ AWG 14)

## In conformity with standards:

IEC 60947-5-1, EN 60947-5-1, EN 60947-1, EN 50047, IEC 60204-1, EN 60204-1, EN ISO 14119, EN ISO 12100, IEC 60529, EN 60529, UL 508, CSA 22.2 No.14, IEC 60079-0, EN 60079-0, IEC 60079-11, EN 60079-11.

In conformity with the requirements of:
ATEX Directive 94/9/EC
Low Voltage Directive 2006/95/EC, Machinery Directive 2006/42/EC and EMC Directive 2004/108/EC.
Positive contact opening in conformity with standards:
IEC 60947-5-1, EN 60947-5-1.

Installation for safety applications:
Use only switches marked with the symbol $\Theta$ aside the product code. Always connect the safety circuit to the NC contacts (normally closed contacts: 11-12, 21-22 or 31-32) as stated in standard EN 60947-5-1, encl. K, par. 2. Actuate the switch at least up to the positive opening travel shown in the travel diagrams on page 240 . Operate the switch at least with the positive opening force, indicated between brackets below each article, aside the minimum force value.
§ If not expressly indicated in this chapter, for correct installation and utilization of all articles see chapter utilization requirements from page 235 to page 246.

Category	Zone	EPL	Approvals	Product code extension
2G	1	Gb	Ex II 2G Ex ia IICT6 Gb	EX7
M2	M2	Mb	\&x I M2 Ex ia I Mb	EX7

## Electrical data

Maximum current (ii): $\quad 2.1 \mathrm{~A}$
Maximum voltage (Ui):
Conditional short circuit current: Protection against short circuits:

30 Vdc
1000 A according to EN 60947-5-1
Pollution degree:
fuse 4 A 250 V type gG
〔 This type of switches must be used only in intrinsic safety circuits in conformity with standard IEC 60079-11, EN 60079-11
$\widehat{4}$ For the correct utilization of the switch use cable glands suitable for the zone according to the ATEX directive

## Quality marks of the product:

## © (1)w EH[

UL approval:<br>E131787<br>EAC approval: RU C-IT ДM94.B. 01024

## Characteristics approved by UL

Utilization categories Q300 (69 VA, 125 ... 250 Vdc) A600 (720 VA, $120 \ldots 600 \mathrm{Vac}$ )
Data of housing type $1,4 \mathrm{X}$ "indoor use only", 12,13
For all contact blocks except 2 and 3 use 60 or $75^{\circ} \mathrm{C}$ copper ( Cu ) conductor rigid or flexible, wire size AWG 12/14. Terminal tightening torque of 7.1 lb in ( 0.8 Nm ).
For contact blocks 2 and 3 use 60 or $75^{\circ} \mathrm{C}$ copper ( Cu ) conductor, rigid or flexible, wire size AWG 14. Terminal tightening torque of 12 lb in (1.4 Nm).

In conformity with standard: UL 508, CSA 22.2 No. 14
Please contact our technical service for the list of approved products.

## Adjustable levers

In the switches it is possible to adjust the lever with $10^{\circ}$ steps for the whole $360^{\circ}$ range. The positive movement transmission
is always gua-

ranteed thanks to the particular geometrical coupling between the lever and the revolving shaft as prescribed for safety applications by the German standard BG-GS-ET-15.

## Overturning levers

In the switches, the lever can be fastened straight or reversed, maintaining the positive coupling
This makes it possible to have two different work plans of the lever.


## Orientable heads

In all switches, it is possible to rotate the head in $90^{\circ}$ steps.


## Code structure

## Housing

FM metal, one conduit entry

Contact blocks		
$\mathbf{5}$	1NO+1NC, snap action	
$\mathbf{1 1}$	2NC, snap action	
$\mathbf{1 2}$	2NO, snap action	
$\mathbf{2 0}$	1NO+2NC, slow action	
$\mathbf{2 1}$	3NC, slow action	
$\mathbf{2 2}$	2NO+1NC, slow action	
	Actuators	
$\mathbf{0 1}$	short plunger	
$\mathbf{0 2}$	roller lever	
$\boldsymbol{\ldots}$	.......................	

## ATEX approval

## -EX7 <br> Exx II 2G Ex ia IICT6 Gb <br> \&x $\mid \mathrm{M} 2 \mathrm{Ex}$ ia 1 Mb

Threaded conduit entry
M2 M20×1.5

Contact type
Cilver contacts (standard)
Gsilver contacts with $1 \mu \mathrm{~m}$ gold   coating



	With external rubber gasket			
Contact blocks				
5 R	FM 508-M2-EX7 $\Theta$ 1NO+1NC	FM 512-M2-EX7 $\Theta$ 1NO+1NC	FM 513-M2-EX7 $\Theta$ 1NO+1NC	FM 515-M2R28-EX7 $\bigodot$ 1NO+1NC
20 L	FM 2008-M2-EX7 $\Theta$ 1NO+2NC	FM 2012-M2-EX7 $\Theta$ 1NO+2NC	FM 2013-M2-EX7 $\Theta 1 \mathrm{NO}+2 \mathrm{NC}$	FM 2015-M2R28-EX7 $\Theta$ 1NO+2NC
Max. speed	$0.5 \mathrm{~m} / \mathrm{s}$	$0.5 \mathrm{~m} / \mathrm{s}$	$0.5 \mathrm{~m} / \mathrm{s}$ with cam at $30^{\circ}$	$0.5 \mathrm{~m} / \mathrm{s}$ with cam at $30^{\circ}$
Min. force	$8 \mathrm{~N}(25 \mathrm{~N} \Theta)$			
Travel diagrams	page 240-group 1	page 240-group 1	page 240-group 1	page 240-group 1


	With external rubber gasket	With external rubber gasket	With external rubber gasket	Rope switch for signalling
Contact blocks				
5 R	FM 520-M2-EX7 1NO+1NC	FM 521-M2-EX7 1NO+1NC	FM 525-M2-EX7 1NO+1NC	FM 576-M2-EX7 1NO+1NC
20 L	FM 2020-M2-EX7 1NO+2NC	FM 2021-M2-EX7 1NO+2NC	FM 2025-M2-EX7 1NO+2NC	FM 2076-M2-EX7 2NO+1NC
Max. speed	$1 \mathrm{~m} / \mathrm{s}$	$1 \mathrm{~m} / \mathrm{s}$	$1 \mathrm{~m} / \mathrm{s}$	$0.5 \mathrm{~m} / \mathrm{s}$
Min. force	0.06 Nm	0.04 Nm	0.11 Nm	initial 20 N - final 40 N
Travel diagrams	page 240 - group 4	page 240 - group 4	page 240 - group 4	page 240 - group 7


Code-EX7	Approvals	Category	Zone	EPL
	$\varepsilon_{x}$ II 2G Ex ia IICT6 Gb	2G	1	Gb
	$\varepsilon_{x} /$ I M2 Ex ia I Mb	M2	M2	Mb
Accessories See page 225		$\rightarrow$ The 2D/3D files are available at www.pizzato.com		


Contact type:$\begin{array}{\|l\|l} \hline \mathbf{R} & =\text { snap action } \\ \mathbf{L} & \text { = slow action } \end{array}$	
Contact blocks	
5 R	FM 538-M2-EX7 $\Theta$ 1NO+1NC
20 L	FM 2038-M2-EX7 $¢$ 1NO+2NC
Min. force	$0,06 \mathrm{Nm}(0,25 \mathrm{Nm} \Theta)$
Travel diagrams	page 240 - group 5

## IMPORTANT

For safety applications: join only switches and actuators marked with symbol $\Theta$ aside the product code.
For more information about safety applications see details on page 235

Loose actuators
IMPORTANT: These loose actuators can be used with items of the FM series only.


- ${ }^{(1)}$ Actuator VF LE55 can only be used in safety applications if adjusted to its max. length, as shown in figure beside. If you need an adjustable lever for safety applications, use the adjustable safety lever VF LE56.


Safety switches with slotted hole lever
All measures in the drawings are in mm


## Application examples



## Safety switches for hinges



## Application examples


© If not expressly indicated in this chapter, for correct installation and utilization of all articles see chapter utilization requirements from page 235 to page 246.


Accessories See page 225

## Notes




## Main features

－Approvals：

## 2D category

－Metal housing，one conduit entry
－Protection degree IP66
－Versions with gold－plated silver contacts

## ATEX markings and quality labels：



这 $\boldsymbol{I I}$ 2D Ex tb IIIC T80 ${ }^{\circ} \mathrm{C}$ Db

## Technical data

## Housing

Metal housing，baked powder coating
One threaded conduit entry：
Protection degree：
M20x1．5
IP66 according to EN 60529 with cable gland having equal or higher protection degree

## General data

Ambient temperature：	$-20^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$
Max．actuation frequency：	3600 operating cycles ${ }^{1 /} /$ hour $^{\text {r }}$
Mechanical endurance：	
F•••••－EX•	10 million operating cycles ${ }^{1}$
F $\bullet \bullet 93-E X \bullet, F \bullet \bullet 78-E X \bullet, F \bullet \bullet \bullet 8-E X \bullet, ~ F \bullet \bullet \bullet 95-E X \bullet$	500.000 operating cycles ${ }^{1}$
F•••99－EX•，F•••R2－EX•	250.000 operating cycles ${ }^{1}$
Mounting position：	any

Mounting position：
any
Safety parameters $\mathrm{B}_{10 \mathrm{~d}}$（NC contacts）：
F•••••EX 20，000，000
F•••93－EX•，F•••78－EX•，F•••8•－EX 1，000，000
F•••99－EX•，F•••R2－EX 500，000
F•••95－EX•
2，500，00
Mechanical interlock，not coded：type 1 according to EN ISO 14119
Tightening torques for installation：see pages 235－246
（1）One operation cycle means two movements，one to close and one to open contacts，as defined in EN 60947－5－1．

Cable cross section（flexible copper strands）

Contact blocks 20，28．

Contact block 5 ：

## In conformity with standards：

IEC 60947－5－1，EN 60947－5－1，EN 60947－1，EN 50047，IEC 60204－1，EN 60204－1， EN ISO 14119，EN ISO 12100，IEC 60529，EN 60529，UL 508，CSA 22.2 No．14， IEC 60079－0，EN 60079－0，IEC 60079－31，EN 60079－31．

In conformity with the requirements of：
ATEX Directive 94／9／EC
Low Voltage Directive 2006／95／EC，Machinery Directive 2006／42／EC and
EMC Directive 2004／108／EC．
Positive contact opening in conformity with standards：
IEC 60947－5－1，EN 60947－5－1．

Installation for safety applications：
Use only switches marked with the symbol $\Theta$ aside the product code．Always connect the safety circuit to the NC contacts（normally closed contacts：11－12，21－22 or 31－32）as stated in standard EN 60947－5－1，encl．K，par．2．Actuate the switch at least up to the positive opening travel shown in the travel diagrams on page 238．Operate the switch at least with the positive opening force，indicated between brackets below each article，aside the minimum force value．
§ If not expressly indicated in this chapter，for correct installation and utilization of all articles see chapter utilization requirements from page 235 to page 246.

Category	Zone	EPL	Approvals	Product code extension
2D	21	Db	\x \｜II 2D Ex tb IIIC $780^{\circ} \mathrm{C} \mathrm{Db}$	－EX8

## Electrical data

Thermal current（lth）： 6 A
Rated insulation voltage（Ui）：
Conditional short circuit current：
Protection against short circuits：
Pollution degree：

250 Vac／Vdc
1000 A according to EN 60947－5－1
type aM fuse 6 A 500 V
3

## Utilization category

Alternating current：AC15 $(50 \div 60 \mathrm{~Hz})$
Ue（V） 250
le（A） 6
Direct current：DC13
Ue（V） $24 \quad 125 \quad 250$
$\begin{array}{lll}\text { le（A）} & 6 & 1.1\end{array}$
0.4
$\widehat{4}$ For the correct utilization of the switch please use cable glands suitable for the zone according to the ATEX directive

## Quality marks of the product:

## (©) $w$ En

UL approval: E131787<br>EAC approval: RU C-IT ДM94.B. 01024

## Characteristics approved by UL <br> Utilization categories Q300 (69 VA, 125 ... 250 Vdc) <br> $$
\text { A600 ( } 720 \mathrm{VA}, 120 \ldots 600 \mathrm{Vac} \text { ) }
$$ <br> Data of housing type $1,4 \mathrm{X}$ "indoor use only", 12,13 <br> For all contact blocks except 2 and 3 use 60 or $75^{\circ} \mathrm{C}$ copper ( Cu ) conductor rigid or flexible, wire size AWG 12/14. Terminal tightening torque of 7.1 lb in ( 0.8 Nm ). <br> For contact blocks 2 and 3 use 60 or $75^{\circ} \mathrm{C}$ copper (Cu) conductor, rigid or flexible, wire size AWG 14. Terminal tightening torque of 12 lb in (1.4 Nm). <br> In conformity with standard: UL 508, CSA 22.2 No. 14 <br> Please contact our technical service for the list of approved products.

## Adjustable levers

In the switches it is possible to adjust the lever with $10^{\circ}$ steps for the whole $360^{\circ}$ range. The positive movement transmission


## Overturning levers

In the switches, the lever can be fastened straight or reversed, maintaining the positive coupling.
This makes it possible to have two different work plans of the lever.


## Orientable heads

In all switches, it is possible to rotate the


## Unidirectional heads

For switches with swivelling lever, it is possible to select the unidirectional operation by removing the four screws of the head and revolving the internal plunger.


## Code structure

## FD 502-GM2-EX8

Housing
FD metal, one conduit entry

Contact blocks
5 1NO+1NC, snap action
10 2NO, slow action
11 2NC, snap action
20 1NO+2NC, slow action
21 3NC, slow action
22 2NO+1NC, slow action

Actuators	
$\mathbf{0 1}$	short plunger
$\mathbf{0 2}$	roller lever

ATEX approval
-EX8 旣 \| $2 \mathrm{D} \mathrm{Extb} \| I \mathrm{CT} 80^{\circ} \mathrm{C} \mathrm{Db}$

Threaded conduit entry
M2 M20x1.5

## Contact type

silver contacts (standard)
G
silver contacts with $1 \mu \mathrm{~m}$ gold coating


		Ball, $\varnothing 12.7 \mathrm{~mm}$, stainless steel	Bistable	Rope switch for signalling
Contact blocks				
$5 \quad \mathbf{R}$	FD 516-M2-EX8 $\Theta$ 1NO+1NC	FD 519-M2-EX8 $\Theta$ 1NO+1NC	FD 541-M2-EX8 $\Theta$ 1NO+1NC	FD 576-M2-EX8 1NO+1NC
20 L	FD 2016-M2-EX8 $\Theta$ 1NO+2NC	FD 2019-M2-EX8 $\Theta$ 1NO+2NC		FD 2076-M2-EX8 1NO+2NC
Max. speed	$0.5 \mathrm{~m} / \mathrm{s}$ with cam at $30^{\circ}$	$0.5 \mathrm{~m} / \mathrm{s}$	$0.5 \mathrm{~m} / \mathrm{s}$ with cam at $30^{\circ}$	$0.5 \mathrm{~m} / \mathrm{s}$
Min. force	$8 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$8 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$0.21 \mathrm{Nm}(0.36 \mathrm{Nm} \Theta)$	initial 20 N - final 40 N
Travel diagrams	page 238-group 1	page 238-group 1	page 238 - group 4	page 238 - group 6

All measures in the drawings are in mm


Accessories See page 225

Position switches with revolving lever without actuator
Contact type:

| $\mathbf{R}=$ shap a action |
| :--- | :--- |
| $\mathbf{L}=$ slow action |

Regular head

## IMPORTANT

For safety applications: join only switches and actuators marked with symbol $\Theta$ aside the product code.
For more information about safety applications see details on page 235.


Safety switches with separate actuator
All measures in the drawings are in mm

Contact type:	Switches with separate actuator	Switches with separate actuator and key release	Switches with manual mechanical delay
Contact blocks	Switches without actuator	Switches without actuator	Switches without actuator
20 L   28 $\mathbf{L}$	FD 2093-M2-EX8 $\Theta$ 1NO+2NC	FD 2099-M2-EX8 FD 2899-M2-EX8 $(1 \mathrm{NO}+2 \mathrm{NC}$	FD 20R2-M2-EX8 $\Theta 1 N O+2 N C$
Min. force Travel diagrams Gen. Cat. Safety	$10 \mathrm{~N}(18 \mathrm{~N} \Theta)$ page 21	$30 \mathrm{~N}(40 \mathrm{~N} \Theta)$ page 140	$10 \mathrm{~N}(18 \mathrm{~N} \Theta$

## Actuators

|  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VF KEYF | VF KEYF1 | VF KEYF2 | VF KEYF3 | VF KEYF7 | VF KEYF8 |
| Straight actuator | Angled actuator | Swivelling actuator | Actuator adjustable in <br> two directions | Actuator adjustable in <br> one direction | Universal actuator |

IMPORTANT: These actuators can be used with items of the FD series only (e.g. FD 2093-M2-EX8).
Low level coded actuators according to EN ISO 14119.

Safety switches for hinges

Contact type:	
L = slow action	
Contact blocks	
20 L	FD 2095-M2-EX8 $\Theta$ 1NO+2NC
Min. force	$0,15 \mathrm{Nm}(0,4 \mathrm{Nm} \Theta)$
Travel diagrams Gen. Cat. Safety	page 75

§ If not expressly indicated in this chapter, for correct installation and utilization of all articles see chapter utilization requirements from page 235 to page 246.

Code	Approvals	Category	Zone	EPL		
-EX8	Exx \\| $\\| 2 \mathrm{D} \mathrm{Ex} \mathrm{tb} \mathrm{IIICT80}{ }^{\circ} \mathrm{C} \mathrm{Db}$	2D	21	Db		

## Safety rope switch with reset for emergency stops

Contact type:
$\mathbf{L}$ = slow action
Contact blocks

## Accessories for rope installation



## Application examples and max. rope length


© If not expressly indicated in this chapter, for correct installation and utilization of all articles see chapter utilization requirements from page 235 to page 246.

Code Approvals	Category	Zone	EPL
-EX8 ¢ ¢x II 2D Ex tb IIICT80 ${ }^{\circ} \mathrm{C} \mathrm{Db}$	2D	21	Db



## Main features

- Approvals:

2D category

- Metal housing, three conduit entries
- Protection degree IP66
- Versions with gold-plated silver contacts


## ATEX markings and quality labels:

$C E$
区x II 2D Ex tb IIIC $\mathbf{T 8 0}{ }^{\circ} \mathrm{C}$ Db
certification in progress

## Technical data

## Housing

Metal housing, baked powder coating
Three threaded conduit entries:
M20x1.5
Protection degree:
IP66 according to EN 60529 with cable gland having equal or higher protection degree

## General data

Ambient temperature: $-20^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$

Max. actuation frequency:
3600 operating cycles ${ }^{1} /$ hour
Mechanical endurance:
F•••••-EX•
10 million operating cycles ${ }^{1}$
F•••93-EX $\bullet$ F $\bullet \bullet \bullet 78-E X \bullet, F \bullet \bullet \bullet 8 \bullet E X \bullet, F \bullet \bullet \bullet 95-E X \bullet 500.000$ operating cycles ${ }^{1}$
Mounting position:
any
Safety parameters $\mathrm{B}_{10 \mathrm{~d}}$ (NC contacts):
F•••••-EX• 20,000,000
$F \bullet \bullet \bullet 93-E X \bullet, F \bullet \bullet \bullet 8-E X \bullet, F \bullet \bullet \bullet 8 \bullet-E X \quad 1,000,000$
F•••95-EX•
Mechanical interlock, not coded:
2,500,00
Tightening torques for installation:
type 1 according to EN ISO 14119 EN 60947-5-1.

Cable cross section (flexible copper strands)
Contact block 20:

$\min$.	$1 \times 0.34 \mathrm{~mm}^{2}$	$(1 \times$ AWG 22)
$\operatorname{max.}$	$2 \times 1.5 \mathrm{~mm}^{2}$	$(2 \times$ AWG 16)
$\min$.	$1 \times 0.5 \mathrm{~mm}^{2}$	$(1 \times$ AWG 20)
$\max$.	$2 \times 2.5 \mathrm{~mm}^{2}$	$(2 \times$ AWG 14)

## In conformity with standards:

IEC 60947-5-1, EN 60947-5-1, EN 60947-1, EN 50047, IEC 60204-1, EN 60204-1,
EN ISO 14119, EN ISO 12100, IEC 60529, EN 60529, UL 508, CSA 22.2 No.14, IEC 60079-0, EN 60079-0, IEC 60079-31, EN 60079-31.

## In conformity with the requirements of: <br> ATEX Directive 94/9/EC <br> Low Voltage Directive 2006/95/EC, Machinery Directive 2006/42/EC and <br> EMC Directive 2004/108/EC. <br> Positive contact opening in conformity with standards: <br> IEC 60947-5-1, EN 60947-5-1.

Installation for safety applications:
Use only switches marked with the symbol $\Theta$ aside the product code. Always connect the safety circuit to the NC contacts (normally closed contacts: 11-12, 21-22 or 31-32) as stated in standard EN 60947-5-1, encl. K, par. 2. Actuate the switch at least up to the positive opening travel shown in the travel diagrams on page 238. Operate the switch at least with the positive opening force, indicated between brackets below each article, aside the minimum force value.
§ If not expressly indicated in this chapter, for correct installation and utilization of all articles see chapter utilization requirements from page 235 to page 246.

Category	Zone	EPL	Approvals	Product code exten-   sion	
2D	21	Db	$\Sigma_{x} \\|$ II 2D Ex tb IIICT80 ${ }^{\circ} \mathrm{C} \mathrm{Db}$	-EX8	

## Electrical data

Thermal current (Ith): 6 A
Rated insulation voltage (Ui):
Conditional short circuit current:
Protection against short circuits:
Pollution degree:

6 A
250 Vac/Ndc
1000 A according to EN 60947-5-1
type aM fuse 6 A 500 V
3

## Utilization category

Alternating current: AC15 $(50 \div 60 \mathrm{~Hz})$
Ue (V) 250
le (A) 6
Direct current: DC13
Ue (V) $24 \quad 125 \quad 250$
$\begin{array}{lll}\text { le (A) } & 6 & 1.1\end{array}$
0.4
$\overleftrightarrow{4}$ For the correct utilization of the switch please use cable glands suitable for the zone according to the ATEX directive

## Quality marks of the product:

## © (1)w EH[

$\begin{array}{ll}\text { UL approval: } & \text { E131787 } \\ \text { EAC approval: } & \text { RU C-IT ДM94.B. } 01024\end{array}$

## Characteristics approved by UL <br> Utilization categories Q300 (69 VA, 125 ... 250 Vdc ) <br> $$
\text { A600 ( } 720 \mathrm{VA}, 120 \ldots 600 \mathrm{Vac} \text { ) }
$$ <br> Data of housing type $1,4 \mathrm{X}$ "indoor use only", 12,13 <br> For all contact blocks except 2 and 3 use 60 or $75^{\circ} \mathrm{C}$ copper ( Cu ) conductor rigid or flexible, wire size AWG $12 / 14$. Terminal tightening torque of 7.1 lb in (0.8 Nm). <br> For contact blocks 2 and 3 use 60 or $75^{\circ} \mathrm{C}$ copper ( Cu ) conductor, rigid or flexible, wire size AWG 14. Terminal tightening torque of 12 lb in (1.4 Nm). <br> In conformity with standard: UL 508, CSA 22.2 No. 14 <br> Please contact our technical service for the list of approved products.

## Adjustable levers

For switches with swivelling lever the lever can be adjusted in $10^{\circ}$ steps over the entire $360^{\circ}$ range. The positive movement
 transmission is always guaranteed thanks to the particular geometrical coupling between the lever and the revolving shaft as prescribed for safety applications by the German standard BG-GS-ET-15.

## Overturning levers

For switches with swivelling lever the lever can be fastened straight or reversed, maintaining the positive coupling.
This makes it possible to have two different work plans of the lever.


## Orientable heads

In all switches, it is possible to rotate the head in $90^{\circ}$ steps.


## Unidirectional heads

For switches with swivelling lever, it is possible to select the unidirectional operation by removing the four screws of the head and revolving the internal plunger (contact block 16 excluded).


## Code structure

Attention! The feasibility of a code number does not mean the effective availability of a product. Please contact our sales office.

$$
\text { FL } 502-\mathrm{GM2}-\mathrm{EX8}
$$

## Housing

FL metal, three conduit entries

Contact blocks
$5 \quad 1 \mathrm{NO}+1 \mathrm{NC}$, snap action
10 2NO, slow action
11 2NC, snap action
20 1NO+2NC, slow action
21 3NC, slow action
22 2NO+1NC, slow action

## Actuators

01 short plunger
02 roller lever

ATEX approval
-EX8 旣 \| $2 \mathrm{D} \mathrm{Extb} \| I \mathrm{CT} 80^{\circ} \mathrm{C} \mathrm{Db}$

Threaded conduit entry
M2 M20x1.5

## Contact type

silver contacts (standard)

G
silver contacts with $1 \mu \mathrm{~m}$ gold coating


		Ball, $\varnothing 12.7$ mm, stainless steel	Bistable	Rope switch for signalling
Contact blocks				
5 R	FL 516-M2-EX8 $\Theta$ 1NO+1NC	FL 519-M2-EX8 $\Theta$ 1NO+1NC	FL 541-M2-EX8 $\Theta$ 1NO+1NC	FL 576-M2-EX8 1NO+1NC
20 L	FL 2016-M2-EX8 $\Theta$ 1NO+2NC	FL 2019-M2-EX8 $\Theta 1 \mathrm{NO}+2 \mathrm{NC}$		FL 2076-M2-EX8 1NO+2NC
Max. speed	$0.5 \mathrm{~m} / \mathrm{s}$ with cam at $30^{\circ}$	$0.5 \mathrm{~m} / \mathrm{s}$	$0.5 \mathrm{~m} / \mathrm{s}$ with cam at $30^{\circ}$	$0.5 \mathrm{~m} / \mathrm{s}$
Min. force	$8 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$8 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$0.21 \mathrm{Nm}(0.36 \mathrm{Nm} \Theta)$	initial 20 N - final 40 N
Travel diagrams	page 238 - group 1	page 238 - group 1	page 238 - group 4	page 238 - group 6



Accessories See page 225

Position switches with revolving lever without actuator
Contact type:

$\overline{\mathbf{R}}=$ snap action
$\mathbf{L}=$ slow action

Cogular head

IMPORTANT
For safety applications: join only switches and actuators marked with symbol $\Theta$ aside the product code.
For more information about safety applications see details on page 235.


Safety switches with separate actuator

Contact type:
L = slow action

## Actuators

| VF KEYF | VF KEYF1 | VF KEYF2 | VF KEYF3 | VF KEYF7 | VF KEYF8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Straight actuator | Angled actuator | Swivelling actuator | Actuator adjustable in <br> two directions | Actuator adjustable in <br> one direction | Universal actuator |

IMPORTANT: These actuators can be used with items of the FL series only (e.g. FL 2093-M2-EX8).
Low level coded actuators according to EN ISO 14119.

## Safety switches for hinges

Contact type:	
L = slow action	
20 L	FL 2095-M2-EX8 $\Theta 1 \mathrm{NO}+2 \mathrm{NC}$
Min. force	$0,15 \mathrm{Nm}(0,4 \mathrm{Nm} \Theta)$
Travel diagrams Gen. Cat. Safety	page 75

§ If not expressly indicated in this chapter, for correct installation and utilization of all articles see chapter utilization requirements from page 235 to page 246.

Code	Approvals	Category	Zone	EPL	
-EX8	\xx \\|II 2D Ex tb IIICT80 ${ }^{\circ} \mathrm{C} \mathrm{Db}$	2D	21	Db	

## Safety rope switch with reset for emergency stops

Contact type: $\mathbf{L} \text { = slow action }$			
18 L	FL 1878-M2-EX8 $\Theta$ 1NO+1NC	FL 1883-M2-EX8 $\Theta$ 1NO+1NC	FL 1884-M2-EX8 $\Theta$ 1NO+1NC
20 L	FL 2078-M2-EX8 $\Theta$ 1NO+2NC	FL 2083-M2-EX8 $\Theta$ 1NO+2NC	FL 2084-M2-EX8 $\Theta$ 1NO+2NC
Min. force	initial $63 \mathrm{~N} . . . \mathrm{final} 83 \mathrm{~N}(90 \mathrm{~N} \Theta)$	initial $147 \mathrm{~N} . .$. final $235 \mathrm{~N}(250 \mathrm{~N} \Theta)$	initial 147 N ...final $235 \mathrm{~N}(250 \mathrm{~N} \Theta)$
Travel diagrams Gen. Cat. Safety	page 171-group 1	page 171 - group 2	page 171-group 2

## Accessories for rope installation



## Application examples and max. rope length



〔 If not expressly indicated in this chapter, for correct installation and utilization of all articles see chapter utilization requirements from page 235 to page 246.

Code	Approvals	Category	Zone	EPL	
-EX8	〔x \\| \| $2 \mathrm{D} \mathrm{Ex} \mathrm{tb} \mathrm{IIIC} 780^{\circ} \mathrm{C} \mathrm{Db}$	2D	21	Db	



## Main features

- Approvals:

3D and 3G category

- Metal housing
- Protection degree IP67
- Polyurethane cable without halogens


## ATEX markings and quality labels:

C
(Ex) II 3D Extc IIIC T80 ${ }^{\circ} \mathrm{C}$ Dc区 $\underbrace{}_{x}$ II 3G Ex nC IIC T6 Gc

## Technical data

## Housing

Metal housing, baked powder coating
2 m connection cable in polyurethane without halogens, other lengths on request
Protection degree:
IP67 according to EN 60529

## General data

Ambient temperature:
$-20^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C}$
Max. actuation frequency:
3600 operating cycles ${ }^{1} /$ hour
Mechanical endurance:
10 million operating cycles ${ }^{1}$
Mounting position: any
Safety parameters $B_{10 d}$ (NC contacts):
F•••••-EX•
Mechanical interlock, not coded:
20,000,000

Tightening torques for installation:
type 1 according to EN ISO 14119
see pages 235-246
(1) One operation cycle means two movements, one to close and one to open contacts, as defined in EN 60947-5-1.

## In conformity with standards:

IEC 60947-5-1, EN 60947-5-1, EN 60947-1, IEC 60204-1, EN 60204-1, EN ISO 14119, EN ISO 12100, IEC 60529, EN 60529, UL 508, CSA 22.2 No.14, IEC 60079-0, EN 60079-0, IEC 60079-31, EN 60079-31, IEC 60079-15, EN 60079-15.

## In conformity with the requirements of:

ATEX Directive 94/9/EC
Low Voltage Directive 2006/95/EC, Machinery Directive 2006/42/EC and
EMC Directive 2004/108/EC.
Positive contact opening in conformity with standards:
IEC 60947-5-1, EN 60947-5-1.

## Installation for safety applications:

Use only switches marked with the symbol $\Theta$ aside the product code. Always connect the safety circuit to the NC contacts (normally closed contacts: see "internal connections") as stated in EN 60947-5-1, encl. K, par. 2. Actuate the switch at least up to the positive opening travel shown in the travel diagrams on page 241. Operate the switch at least with the positive opening force, indicated between brackets below each article, aside the minimum force value.
. If not expressly indicated in this chapter, for correct installation and utilization of all articles see chapter utilization requirements from page 235 to page 246.

Category	Zone	EPL	Approvals	Product code extension
3D	22	Dc	Exx II 3D Ex tc IIICT $80{ }^{\circ} \mathrm{C} \mathrm{Dc}$	-EX
3G	2	Gc	Exx II 3G Ex nC IICT6 Gc	X

## Electrical data

Thermal current (Ith):
Rated insulation voltage (Ui):
Conditional short circuit current:
Protection against short circuits:
Pollution degree:

10 A
$400 \mathrm{Vac} / \mathrm{dc}$
1000 A according to EN 60947-5-1
type aM fuse 10 A 500 V
3

Utilization category

Alternating current:	AC15	$(50 \div 60 \mathrm{~Hz})$	
Ue (V)	120	250	400
le (A)	6	4	3
Direct current:	DC13		
Ue (V)	24	125	250
le (A)	2.5	0.55	0.27

## Adjustable levers

In the switches it is possible to adjust the lever with $10^{\circ}$ steps for the whole $360^{\circ}$ range. The positive movement transmission is always gua-
 ranteed thanks to the particular geometrical coupling between the lever and the revolving shaft as prescribed for safety applications by the German standard BG-GS-ET-15.

## Overturning levers

In the switches, the lever can be fastened straight or reversed, maintaining the positive coupling.
This makes it possible to have two different work plans of the lever.


## Orientable heads

With some models it is possible to rotate the head in $90^{\circ}$ or $180^{\circ}$ degree steps.


## Internal connections



Code structure


		Operation in one direction	With external rubber gasket	Fixed only by threaded head
$\begin{gathered} \mathbf{R}=\text { snap action } \\ \mathbf{L}=\text { slow action } \end{gathered}$				
Contact blocks				
45 R	FA 4501-2SH-EX5 $\Theta$ 1NO+1NC	FA 4502-2SH-EX5 $\Theta$ 1NO+1NC	FA 4508-2SH-EX5 $\Theta$ 1NO+1NC	FA 4510-2SH-EX5 $\Theta$ 1NO+1NC
46 L	FA 4601-2SH-EX5 $\Theta$ 1NO+1NC	FA 4602-2SH-EX5 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FA 4608-2SH-EX5 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FA 4610-2SH-EX5 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$
Max. speed	$0.5 \mathrm{~m} / \mathrm{s}$			
Min. force	$10 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$5 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$10 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$10 \mathrm{~N}(25 \mathrm{~N} \Theta)$
Travel diagrams	page 241 - group 1	page 241 - group 2	page 241 - group 1	page 241 - group 1



	Roller, $\varnothing 12 \mathrm{~mm}$, stainless steel	With external rubber gasket	With external rubber gasket	With $\varnothing 20 \mathrm{~mm}$ stainless steel roller on request
Contact blocks				
45 R	FA 4517-2SH-EX5 $\Theta$ 1NO+1NC	FA 4520-2SH-EX5 1NO+1NC	FA 4525-2SH-EX5 1NO+1NC	FA 4530-2SH-EX5 $\Theta$ 1NO+1NC
46 L	FA 4617-2SH-EX5 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$			FA 4630-2SH-EX5 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$
Max. speed	$0.1 \mathrm{~m} / \mathrm{s}$ with cam at $30^{\circ}$	$1 \mathrm{~m} / \mathrm{s}$	$1 \mathrm{~m} / \mathrm{s}$	$1.5 \mathrm{~m} / \mathrm{s}$ with cam at $30^{\circ}$
Min. force	$10 \mathrm{~N}(25 \mathrm{~N} \Theta)$	0.03 Nm	0.06 Nm	$0.03 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$
Travel diagrams	page 241 - group 1	page 241 - group 3	page 241 - group 3	page 241 - group 4


Code	Approvals	Category	Zone	EPL
-EX5		3D	22	Dc
	[xx II 3G Ex nC IICT6 Gc	3G	2	Gc




	With stainless steel roller on request	With stainless steel roller on request	With stainless steel roller on request	Fiber glass rod
Contact blocks				
45 R	FA 4555-2SH-EX5 $\Theta^{(1)} 1 \mathrm{NO}+1 \mathrm{NC}$	FA 4556-2SH-EX5 $\Theta$ 1NO+1NC	FA 4557-2SH-EX5 $\Theta$ 1NO+1NC	FA 4569-2SH-EX5 1NO+1NC
46 L	FA 4655-2SH-EX5 $\Theta^{(1)} 1 \mathrm{NO}+1 \mathrm{NC}$	FA 4656-2SH-EX5 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FA 4657-2SH-EX5 $\Theta$ 1NO+1NC	FA 4669-2SH-EX5 1NO+1NC
Max. speed	$1.5 \mathrm{~m} / \mathrm{s}$ with cam at $30^{\circ}$	$1.5 \mathrm{~m} / \mathrm{s}$ with cam at $30^{\circ}$	$1.5 \mathrm{~m} / \mathrm{s}$ with cam at $30^{\circ}$	$1.5 \mathrm{~m} / \mathrm{s}$
Min. force	$0.03 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.03 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.03 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	0.03 Nm
Travel diagrams	page 241 - group 4			

${ }^{(1)}$ Positive opening only with actuator set to max.

Code	Approvals	Category	Zone	EPL
-EX5	〔¢x II 3D Ex tc IIICT80 ${ }^{\circ} \mathrm{C}$ Dc	3D	22	Dc
	[xx II 3G Ex nC IICT6 Gc	3G	2	Gc



## Main features

- Approvals:

3D category

- Metal housing, one conduit entry
- Protection degree IP66
- Versions with gold-plated silver contacts

ATEX markings and quality labels:
$\varepsilon_{x} \| 3 \mathrm{DExtc} \operatorname{IIIC~T80}{ }^{\circ} \mathrm{C}$ Dc

## Technical data

## Housing

Metal housing, baked powder coating
One threaded conduit entry:
Protection degree:
M20x1.5
IP66 according to EN 60529 with cable gland having equal or higher protection degree

## General data

Ambient temperature:
Max. actuation frequency:
Mechanical endurance:
F•••••-EX•
F•••93-EX•F•••78-EX• F•••8•-EX•, F•••95-EX•
F•••99-EX•, F•••R2-EX
Mounting position:
Safety parameters $\mathrm{B}_{10 \mathrm{~d}}$ (NC contacts):
F•••••-EX• 20,000,000
$F \bullet \bullet \bullet 93-E X \bullet, F \bullet \bullet 78-E X \bullet, F \bullet \bullet \bullet 8 \bullet-E X \quad 1,000,000$
F•••99-EX•, F•••R2-EX
F•••95-EX•
Mechanical interlock, not coded:
500,000
2,500,00
Tightening torques for installation:
type 1 according to EN ISO 14119
see pages 235-246
(1) One operation cycle means two movements, one to close and one to open contacts, as defined in EN 60947-5-1.

Cable cross section (flexible copper strands)
Contact blocks 20, 28 :

$\min$.	$1 \times 0.34 \mathrm{~mm}^{2}$	$(1 \times$ AWG 22)
$\max$.	$2 \times 1.5 \mathrm{~mm}^{2}$	$(2 \times$ AWG 16)
$\min$.	$1 \times 0.5 \mathrm{~mm}^{2}$	$(1 \times$ AWG 20)
$\max$.	$2 \times 2.5 \mathrm{~mm}^{2}$	$(2 \times$ AWG 14)
$\min$.	$1 \times 0.5 \mathrm{~mm}^{2}$	$(1 \times$ AWG 20)
$\max$.	$2 \times 1.5 \mathrm{~mm}^{2}$	$(2 \times$ AWG 16)

In conformity with standards:
IEC 60947-5-1, EN 60947-5-1, EN 60947-1, EN 50041, IEC 60204-1, EN 60204-1, EN ISO 14119, EN ISO 12100, IEC 60529, EN 60529, UL 508, CSA 22.2 No.14, IEC 60079-0, EN 60079-0, IEC 60079-31, EN 60079-31.

## In conformity with the requirements of:

ATEX Directive 94/9/EC
Low Voltage Directive 2006/95/EC, Machinery Directive 2006/42/EC and
EMC Directive 2004/108/EC.
Positive contact opening in conformity with standards:
IEC 60947-5-1, EN 60947-5-1.

Installation for safety applications:
Use only switches marked with the symbol $\Theta$ aside the product code. Always connect the safety circuit to the NC contacts (normally closed contacts: 11-12, 21-22 or 31-32) as stated in standard EN 60947-5-1, encl. K, par. 2. Actuate the switch at least up to the positive opening travel shown in the travel diagrams on page 238. Operate the switch at least with the positive opening force, indicated between brackets below each article, aside the minimum force value.
§ If not expressly indicated in this chapter, for correct installation and utilization of all articles see chapter utilization requirements from page 235 to page 246.
$\begin{array}{ccccc}\text { Category } & \text { Zone } & \text { EPL } & \text { Approvals } & \text { Product code exten- } \\ \text { 3D } & \mathbf{2 2} & \text { Dc } & \varepsilon_{x} \| \text { II 3D Ex tc IIIC T80 }\end{array}{ }^{\circ} \mathrm{C}$ Dc $) \quad$-EX4

## Electrical data

Thermal current (lth):
Rated insulation voltage (Ui):
Conditional short circuit current:
Protection against short circuits:
Pollution degree:

## 10 A

500 Vac 600 Vdc
400 Vac for contact blocks 20, 28
1000 A according to EN 60947-5-1
type aM fuse 10 A 500 V
3

## Utilization category

Alternating current:

AC15	$(50 \div 60 \mathrm{~Hz})$		
Ue (V)	250	400	500
le (A)	6	4	1
Direct current:	DC13		
Ue (V)	24	125	250
le (A)	6	1.1	0.4

$\overleftrightarrow{4}$ For the correct utilization of the switch please use cable glands suitable for the zone according to the ATEX directive

## Quality marks of the product:

## © (1)w EH[

$\begin{array}{ll}\text { UL approval: } & \text { E131787 } \\ \text { EAC approval: } & \text { RU C-IT ДM94.B. } 01024\end{array}$

## Characteristics approved by UL <br> Utilization categories Q300 (69 VA, 125 ... 250 Vdc) <br> $$
\text { A600 ( } 720 \mathrm{VA}, 120 \ldots 600 \mathrm{Vac} \text { ) }
$$ <br> Data of housing type $1,4 \mathrm{X}$ "indoor use only", 12,13 <br> For all contact blocks except 2 and 3 use 60 or $75^{\circ} \mathrm{C}$ copper ( Cu ) conductor rigid or flexible, wire size AWG 12/14. Terminal tightening torque of 7.1 lb in ( 0.8 Nm ). <br> For contact blocks 2 and 3 use 60 or $75^{\circ} \mathrm{C}$ copper ( Cu ) conductor, rigid or flexible, wire size AWG 14. Terminal tightening torque of 12 lb in (1.4 Nm). <br> In conformity with standard: UL 508, CSA 22.2 No. 14 <br> Please contact our technical service for the list of approved products.

## Adjustable levers

In the switches it is possible to adjust the lever with $10^{\circ}$ steps for the whole $360^{\circ}$ range. The positive movement transmission is always guaranteed thanks to the particular geometrical
 coupling between the lever and the revolving shaft as prescribed for safety applications by the German standard BG-GS-ET-15

## Overturning levers

In the switches, the lever can be fastened straight or reversed, maintaining the positive coupling.
This makes it possible to have two different work plans of the lever.


## Orientable heads

In all switches, it is possible to rotate the head in $90^{\circ}$ steps.


## Unidirectional heads

For switches with swivelling lever, it is possible to select the unidirectional operation by removing the four screws of the head and revolving the internal plunger.


## Code structure

Attention! The feasibility of a code number does not mean the effective availability of a product. Please contact our sales office.

## FD 502-GM2-EX4

## Housing

FD metal, one conduit entry

Contact blocks	
$\mathbf{5}$	$1 \mathrm{NO}+1 \mathrm{NC}$, snap action
$\mathbf{6}$	$1 \mathrm{NO}+1 \mathrm{NC}$, slow action
$\mathbf{1 8}$	$1 \mathrm{NO}+1 \mathrm{NC}$, slow action
$\mathbf{2 0}$	$1 \mathrm{NO}+2 \mathrm{NC}$, slow action
$\mathbf{2}$	$2 \times(1 \mathrm{NO}-1 \mathrm{NC})$, snap action

## Actuators

01 short plunger
02 roller lever

ATEX approval
-EX4 〔xx \| 3D Ex tc IIIC $780^{\circ} \mathrm{C}$ Dc
Threaded conduit entry
M2 M20×1.5

## Contact type

silver contacts (standard)
G silver contacts with $1 \mu \mathrm{~m}$ gold coating


	With external rubber gasket		Ball, $\varnothing 12.7 \mathrm{~mm}$, stainless steel	With external rubber gasket
Contact blocks				
5 R	FD 515-M2-EX4 $\Theta$ 1NO+1NC	FD 516-M2-EX4 $\Theta$ 1NO+1NC	FD 519-M2-EX4 $\Theta$ 1NO+1NC	FD 520-M2-EX4 1NO+1NC
6 L	FD 615-M2-EX4 $\Theta$ 1NO+1NC	FD 616-M2-EX4 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FD 619-M2-EX4 $\Theta 1$ (NO+1NC	
20 L	FD 2015-M2-EX4 $\Theta$ 1NO+2NC	FD 2016-M2-EX4 $\Theta$ 1NO+2NC	FD 2019-M2-EX4 $\Theta$ 1NO+2NC	FD 2020-M2-EX4 1NO+2NC
2 R	FD 215-M2-EX4 2x(1NO-1NC)	FD 216-M2-EX4 2x(1NO-1NC)	FD 219-M2-EX4 2x(1NO-1NC)	FD 220-M2-EX4 2x(1NO-1NC)
Max. speed	$0.5 \mathrm{~m} / \mathrm{s}$ with cam at $30^{\circ}$	$0.5 \mathrm{~m} / \mathrm{s}$ with cam at $30^{\circ}$	$0.5 \mathrm{~m} / \mathrm{s}$	$1 \mathrm{~m} / \mathrm{s}$
Min. force	$11 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$8 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$8 \mathrm{~N}(25 \mathrm{~N} \Theta)$	0.09 Nm
Travel diagrams	page 238-group 1	page 238 - group 1	page 238 - group 1	page 238 - group 3



Code	Approvals	Category	Zone	EPL
-EX4	Exx	II 3D Ex tc IIIC T80		

Position switches with revolving lever without actuator
Contact type:

| $\mathbf{R}=$ snap action |
| :---: | :--- |
| $\mathbf{L}$ = slow action |

Regular head
Contact blocks

## IMPORTANT

For safety applications: join only switches and actuators marked with symbol $\Theta$ aside the product code.
For more information about safety applications see details on page 235 .

Loose actuators
IMPORTANT: These loose actuators can be used with items of the FD series only.

	Technopolymer roller $\varnothing 20$ mm	Adjustable round rod Ø $3 \times 125 \mathrm{~mm}$	Adjustable square rod $3 \times 3 \times 125 \mathrm{~mm}$	Flexible rod with pointed end	Adjustable actuator with technopolymer roller	Adjustable fiber glass rod
Article	VF L31 $\Theta$	VF L32 ${ }^{(2)}$	VF L33 ${ }^{(2)}$	VF L34	VF L35 $\Theta{ }^{(1)}{ }^{(2)}$	VF L36 ${ }^{(2)}$
Max. speed	$1.5 \mathrm{~m} / \mathrm{s}$ (cam at $30^{\circ}$ )	$1.5 \mathrm{~m} / \mathrm{s}$	$1.5 \mathrm{~m} / \mathrm{s}$	$1 \mathrm{~m} / \mathrm{s}$	$1.5 \mathrm{~m} / \mathrm{s}$ (cam at $30^{\circ}$ )	$1.5 \mathrm{~m} / \mathrm{s}$
	Technopolymer roller $\varnothing 20 \mathrm{~mm}$	Technopolymer roller $\varnothing 20$ mm	Porcelain roller	Adjustable safety actuator with technopolymer roller	Technopolymer roller $\varnothing 20 \mathrm{~mm}$	
Article	VF L51 $\Theta$	VF L52 $\Theta$	VF L53 $\Theta$	VF L56 $\underbrace{(2)}$	VF L57 $\Theta$	
Max. speed	$1.5 \mathrm{~m} / \mathrm{s}$ (cam at $30^{\circ}$ )	$1.5 \mathrm{~m} / \mathrm{s}$ (cam at $30^{\circ}$ )	$0.5 \mathrm{~m} / \mathrm{s}$	$1.5 \mathrm{~m} / \mathrm{s}$ (cam at $30^{\circ}$ )	$1.5 \mathrm{~m} / \mathrm{s}$ (cam at $30^{\circ}$ )	


Article	VF L31-R24 $\Theta$	VF L35-R24 $\Theta{ }^{(1)(2)}$	VF L51-R24 $\Theta$	VF L52-R24 $\Theta$	VF L56-R24 $\Theta^{(2)}$	VF L57-R24 $\Theta$
Max. speed	$1.5 \mathrm{~m} / \mathrm{s}\left(\mathrm{cam}\right.$ at $30^{\circ}$ )	$1.5 \mathrm{~m} / \mathrm{s}\left(\mathrm{cam}\right.$ at $\left.30^{\circ}\right)$	$1.5 \mathrm{~m} / \mathrm{s}\left(\mathrm{cam}\right.$ at $30^{\circ}$ )	$1.5 \mathrm{~m} / \mathrm{s}$ (cam at $30^{\circ}$ )	$1.5 \mathrm{~m} / \mathrm{s}\left(\mathrm{cam}\right.$ at $\left.30^{\circ}\right)$	$1.5 \mathrm{~m} / \mathrm{s}\left(\mathrm{cam}\right.$ at $\left.30^{\circ}\right)$

${ }^{(1)}$ Actuator VF L35 can only be used in safety applications if adjusted to its max. length, as shown in figure beside. If you need an adjustable lever for safety applications, use the adjustable safety lever VF L56.
${ }^{(2)}$ If installed with switch FD •58-M2-EX4 (e.g. FD 558-M2-EX4, FD 658-M2-EX4...) the actuator could mechanically interfere with the housing of the switch. The interference could happen or not according to the actuator and the head fixing position.

Code Approvals	Category	Zone	EPL		- 过 - =
-EX4 〔-x II 3D Ex tc IIIC T80 ${ }^{\circ} \mathrm{C}$ Dc	3D	22	Dc		
Items with code on green background are stock items			Accessories See page 225	$\rightarrow$ The 2D/3D files are available at www.pizzato.com	

Safety switches with separate actuator

Contact type:	Switches with separate actuator	Switches with separate actuator and key release	Switches with manual mechanical delay
Contact blocks	Switches without actuator	Switches without actuator	Switches without actuator
6 L	FD 693-M2-EX4 $\Theta 1$ NO+1NC		FD 6R2-M2-EX4 $\Theta 1$ (NO+1NC
18 L		FD 1899-M2-EX4 $\rightarrow 1 \mathrm{NO}+1 \mathrm{NC}$	
20 L	FD 2093-M2-EX4 $\Theta 1$ 1NO+2NC	FD 2099-M2-EX4 $\Theta 1$ 1NO+2NC	FD 20R2-M2-EX4 $\Theta 1 \mathrm{NO}+2 \mathrm{NC}$
28 L		FD 2899-M2-EX4 $\rightarrow 1 \mathrm{NO}+2 \mathrm{NC}$	
Min. force	$10 \mathrm{~N}(18 \mathrm{~N} \Theta)$	$30 \mathrm{~N}(40 \mathrm{~N} \Theta)$	$10 \mathrm{~N}(18 \mathrm{~N} \Theta)$
Travel diagrams Gen. Cat. Safety	page 21	page 140	page 132

## Actuators



IMPORTANT: These actuators can be used with items of the FD series only (e.g. FD 693-M2-EX4).
Low level coded actuators according to EN ISO 14119.

## Safety switches for hinges


© If not expressly indicated in this chapter, for correct installation and utilization of all articles see chapter utilization requirements from page 235 to page 246.

Code	Approvals	Category	Zone	EPL
-EX4	〈区x II 3D Ex tc IIIC $780^{\circ} \mathrm{C}$ Dc	3D	22	Dc

## Safety rope switch with reset for emergency stops

Contact type:
$\mathbf{L}$ = slow action

## Accessories for rope installation

VF AF-TR5	VF AF-TR8	VF AF-MR5	VF AF-ME78	VF AF-ME80	VF F05-100	VF AF-IF1GR03	VF AF-CA5	VF AF-CA10
Adjustable stay bolt	Stay bolt	End clamp	Safety spring for longitudinal head	Safety spring for transversal head	$\begin{gathered} \text { Rope, } \varnothing 5 \\ \mathrm{~mm} . \\ 100 \mathrm{~m} \text { rolls } \end{gathered}$	Function indicator for ropes. Text "STOP"	Stainless steel pulley	Angular pulley, stainless steel

## Application examples and max. rope length


© If not expressly indicated in this chapter, for correct installation and utilization of all articles see chapter utilization requirements from page 235 to page 246.

Code Approvals	Category	Zone	EPL
-EX4 纤 II 3D Ex tc IIIC $780^{\circ} \mathrm{C}$ Dc	3D	22	Dc



## Main features

- Approvals:

3D category

- Metal housing, three conduit entries
- Protection degree IP66
- Versions with gold-plated silver contacts

ATEX markings and quality labels:
C

## Technical data

## Housing

Metal housing, baked powder coating

Three threaded conduit entries:
Protection degree:
M20x1.5
IP66 according to EN 60529 with cable gland having equal or higher protection degree

## General data

Ambient temperature:
Max. actuation frequency:
Mechanical endurance:
F•••••-EX 10 million operating cycles ${ }^{1}$
F•••93-EX•, F•••78-EX $\bullet$, $\bullet \bullet \bullet 8 \bullet-E X \bullet$, F•••95-EX 500.000 operating cycles ${ }^{1}$
Mounting position:
Safety parameters $\mathrm{B}_{10 \mathrm{~d}}$ (NC contacts):
F•••••-EX $\quad$ 场
F••••93-EX $\bullet$,F•••78-EX $\cdot$, F•••8•-EX
F•••95-EX•
Mechanical interlock, not coded:
Tightening torques for installation:
(1) One operation cycle means two movements, one to close and one to open contacts, as defined in EN 60947-5-1.

Cable cross section (flexible copper strands)
Contact block 20:

Contact block 5, 6, 18 :

Contact block 2:

$\min$.	$1 \times 0.34 \mathrm{~mm}^{2}$	$(1 \times$ AWG 22)
$\max$.	$2 \times 1.5 \mathrm{~mm}^{2}$	$(2 \times$ AWG 16)
$\min$.	$1 \times 0.5 \mathrm{~mm}^{2}$	$(1 \times$ AWG 20)
$\operatorname{max.}$	$2 \times 2.5 \mathrm{~mm}^{2}$	$(2 \times$ AWG 14)
$\min$.	$1 \times 0.5 \mathrm{~mm}^{2}$	$(1 \times$ AWG 20)
$\max$.	$2 \times 1.5 \mathrm{~mm}^{2}$	$(2 \times$ AWG 16)

## In conformity with standards:

IEC 60947-5-1, EN 60947-5-1, EN 60947-1, EN 50041, IEC 60204-1, EN 60204-1, EN ISO 14119, EN ISO 12100, IEC 60529, EN 60529, UL 508, CSA 22.2 No.14, IEC 60079-0, EN 60079-0, IEC 60079-31, EN 60079-31.

## In conformity with the requirements of:

ATEX Directive 94/9/EC
Low Voltage Directive 2006/95/EC, Machinery Directive 2006/42/EC and
EMC Directive 2004/108/EC.
Positive contact opening in conformity with standards:
IEC 60947-5-1, EN 60947-5-1.

Installation for safety applications:
Use only switches marked with the symbol $\Theta$ aside the product code. Always connect the safety circuit to the NC contacts (normally closed contacts: 11-12, 21-22 or 31-32) as stated in standard EN 60947-5-1, encl. K, par. 2. Actuate the switch at least up to the positive opening travel shown in the travel diagrams on page 238. Operate the switch at least with the positive opening force, indicated between brackets below each article, aside the minimum force value.
§ If not expressly indicated in this chapter, for correct installation and utilization of all articles see chapter utilization requirements from page 235 to page 246.
$\begin{array}{ccccc}\text { Category } & \text { Zone } & \text { EPL } & \text { Approvals } & \text { Product code exten- } \\ \text { 3D } & \mathbf{2 2} & \text { Dc } & \varepsilon_{x} \| \text { II 3D Ex tc IIIC T80 }\end{array}{ }^{\circ} \mathrm{C}$ Dc $) \quad$-EX4

## Electrical data

Thermal current (lth):
Rated insulation voltage (Ui):
Conditional short circuit current:
Protection against short circuits:
Pollution degree:

## 10 A

500 Vac 600 Vdc
400 Vac for contact blocks 20,28
1000 A according to EN 60947-5-1
type aM fuse 10 A 500 V
3

## Utilization category

Alternating current:

AC15	$(50 \div 60 \mathrm{~Hz})$		
Ue (V)	250	400	500
le (A)	6	4	1
Direct current:	DC13		
Ue (V)	24	125	250
le (A)	6	1.1	0.4

$\widehat{4}$ For the correct utilization of the switch please use cable glands suitable for the zone according to the ATEX directive

## Quality marks of the product:

## © (1)w EH[

$\begin{array}{ll}\text { UL approval: } & \text { E131787 } \\ \text { EAC approval: } & \text { RU C-IT ДM94.B. } 01024\end{array}$

## Characteristics approved by UL <br> Utilization categories Q300 (69 VA, 125 ... 250 Vdc) <br> $$
\text { A600 ( } 720 \mathrm{VA}, 120 \ldots 600 \mathrm{Vac} \text { ) }
$$ <br> Data of housing type $1,4 \mathrm{X}$ "indoor use only", 12,13 <br> For all contact blocks except 2 and 3 use 60 or $75^{\circ} \mathrm{C}$ copper ( Cu ) conductor rigid or flexible, wire size AWG 12/14. Terminal tightening torque of 7.1 lb in (0.8 Nm). <br> For contact blocks 2 and 3 use 60 or $75^{\circ} \mathrm{C}$ copper ( Cu ) conductor, rigid or flexible, wire size AWG 14. Terminal tightening torque of 12 lb in (1.4 Nm). <br> In conformity with standard: UL 508, CSA 22.2 No. 14 <br> Please contact our technical service for the list of approved products.

## Adjustable levers

For switches with swivelling lever the lever can be adjusted in $10^{\circ}$ steps over the entire $360^{\circ}$ range. The positive movement
 transmission is always guaranteed thanks to the particular geometrical coupling between the lever and the revolving shaft as prescribed for safety applications by the German standard BG-GS-ET-15.

## Overturning levers

For switches with swivelling lever the lever can be fastened straight or reversed, maintaining the positive coupling.
This makes it possible to have two different work plans of the lever.


## Orientable heads

In all switches, it is possible to rotate the head in $90^{\circ}$ steps.


## Unidirectional heads

For switches with swivelling lever, it is possible to select the unidirectional operation by removing the four screws of the head and revolving the internal plunger (contact block 16 excluded).


## Code structure

Attention! The feasibility of a code number does not mean the effective availability of a product. Please contact our sales office.

## FL 502-GM2-EX4

## Housing

FL metal, three conduit entries

Contact blocks	
$\mathbf{5}$	$1 \mathrm{NO}+1 \mathrm{NC}$, snap action
$\mathbf{6}$	$1 \mathrm{NO}+1 \mathrm{NC}$, slow action
$\mathbf{1 8}$	$1 \mathrm{NO}+1 \mathrm{NC}$, slow action
$\mathbf{2 0}$	$1 \mathrm{NO}+2 \mathrm{NC}$, slow action
$\mathbf{2}$	$2 \times(1 \mathrm{NO}-1 \mathrm{NC})$, snap action

## Actuators

01 short plunger
02 roller lever

ATEX approval
-EX4 〔区x \| 3D Ex tc IIIC $780^{\circ} \mathrm{C}$ Dc
Threaded conduit entry
M2 M20×1.5

## Contact type

silver contacts (standard)
G silver contacts with $1 \mu \mathrm{~m}$ gold coating


ontact blocks	With external rubber gasket			With external rubber gasket
5 R	FL 515-M2-EX4 $\Theta$ 1NO+1NC	FL 516-M2-EX4 $\Theta$ 1NO+1NC	FL 519-M2-EX4 $\Theta$ 1NO+1NC	FL 520-M2-EX4 1NO+1NC
6 L	FL 615-M2-EX4 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FL 616-M2-EX4 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FL 619-M2-EX4 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	
20 L	FL 2015-M2-EX4 $\Theta$ 1NO+2NC	FL 2016-M2-EX4 $\Theta 1 \mathrm{NO}+2 \mathrm{NC}$	FL 2019-M2-EX4 $\Theta 1 \mathrm{NO}+2 \mathrm{NC}$	FL 2020-M2-EX4 1NO+2NC
2 R	FL 215-M2-EX4 2x(1NO-1NC)	FL 216-M2-EX4 2x(1NO-1NC)	FL 219-M2-EX4 2x(1NO-1NC)	FL 220-M2-EX4 2x(1NO-1NC)
Max. speed	$0.5 \mathrm{~m} / \mathrm{s}$ with cam at $30^{\circ}$	$0.5 \mathrm{~m} / \mathrm{s}$ with cam at $30^{\circ}$	$0.5 \mathrm{~m} / \mathrm{s}$	$1 \mathrm{~m} / \mathrm{s}$
Min. force	$11 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$8 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$8 \mathrm{~N}(25 \mathrm{~N} \Theta)$	0.09 Nm
Travel diagrams	page 238-group 1	page 238 - group 1	page 238-group 1	page 238 - group 3


	With external rubber gasket	With external rubber gasket	Bistable	Rope switch for signalling
Contact blocks				
5 R	FL 521-M2-EX4 1NO+1NC	FL 525-M2-EX4 1NO+1NC	FL 541-M2-EX4 $\Theta$ 1NO+1NC	FL 576-M2-EX4 1NO+1NC
6 L				FL 676-M2-EX4 1NO+1NC
20 L	FL 2021-M2-EX4 1NO+2NC	FL 2025-M2-EX4 1NO+2NC		FL 2076-M2-EX4 2NO+1NC
2 R	FL 221-M2-EX4 2x(1NO-1NC)	FL 225-M2-EX4 2x(1NO-1NC)		FL 276-M2-EX4 2x(1NO-1NC)
Max. speed	$1 \mathrm{~m} / \mathrm{s}$	$1 \mathrm{~m} / \mathrm{s}$	$0.5 \mathrm{~m} / \mathrm{s}$ with cam at $30^{\circ}$	$0.5 \mathrm{~m} / \mathrm{s}$
Min. force	0.08 Nm	0.14 Nm	$0.21 \mathrm{Nm}(0.36 \mathrm{Nm} \Theta)$	initial 20 N - final 40 N
Travel diagrams	page 238 - group 3	page 238-group 3	page 238 - group 4	page 238-group 6


Code Approvals	Category	Zone	EPL	All measures in the drawings are in mm
-EX4 ¢xx II 3D Ex tc IIIC T80 ${ }^{\circ} \mathrm{C}$ Dc	3D	22	Dc	
Accessories See page 225	$\rightarrow$ The 2D/3D files are available at www.pizzato.com			

Position switches with revolving lever without actuator
Contact type:

| $\mathbf{R}$ |
| :--- | :--- | :--- |
| $\mathbf{R}=$ snap action |
| $\mathbf{L}=$ slow action |

Regular head

## IMPORTANT

For safety applications: join only switches and actuators marked with symbol $\Theta$ aside the product code.
For more information about safety applications see details on page 235 .

Loose actuators
IMPORTANT: These loose actuators can be used with items of the FL series only.

	Technopolymer roller $\varnothing 20$ mm	Adjustable round rod Ø $3 \times 125 \mathrm{~mm}$	Adjustable square rod $3 \times 3 \times 125 \mathrm{~mm}$	Flexible rod with pointed end	Adjustable actuator with technopolymer roller	Adjustable fiber glass rod
Article	VF L31 $\Theta$	VF L32 ${ }^{(2)}$	VF L33 ${ }^{(2)}$	VF L34	VF L35 $\Theta{ }^{(1)}{ }^{(2)}$	VF L36 ${ }^{(2)}$
Max. speed	$1.5 \mathrm{~m} / \mathrm{s}$ (cam at $30^{\circ}$ )	$1.5 \mathrm{~m} / \mathrm{s}$	$1.5 \mathrm{~m} / \mathrm{s}$	$1 \mathrm{~m} / \mathrm{s}$	$1.5 \mathrm{~m} / \mathrm{s}$ (cam at $30^{\circ}$ )	$1.5 \mathrm{~m} / \mathrm{s}$
	Technopolymer roller $\varnothing 20 \mathrm{~mm}$	Technopolymer roller $\varnothing 20$ mm	Porcelain roller	Adjustable safety actuator with technopolymer roller	Technopolymer roller $\varnothing 20 \mathrm{~mm}$	
Article	VF L51 $\Theta$	VF L52 $\Theta$	VF L53 $\Theta$	VF L56 $\underbrace{(2)}$	VF L57 $\Theta$	
Max. speed	$1.5 \mathrm{~m} / \mathrm{s}$ (cam at $30^{\circ}$ )	$1.5 \mathrm{~m} / \mathrm{s}$ (cam at $30^{\circ}$ )	$0.5 \mathrm{~m} / \mathrm{s}$	$1.5 \mathrm{~m} / \mathrm{s}$ (cam at $30^{\circ}$ )	$1.5 \mathrm{~m} / \mathrm{s}$ (cam at $30^{\circ}$ )	


Article	VF L31-R24 $\Theta$	VF L35-R24 $\Theta{ }^{(1)(2)}$	VF L51-R24 $\Theta$	VF L52-R24 $\Theta$	VF L56-R24 $\Theta^{(2)}$	VF L57-R24 $\Theta$
Max. speed	$1.5 \mathrm{~m} / \mathrm{s}\left(\mathrm{cam}\right.$ at $30^{\circ}$ )	$1.5 \mathrm{~m} / \mathrm{s}\left(\mathrm{cam}\right.$ at $\left.30^{\circ}\right)$	$1.5 \mathrm{~m} / \mathrm{s}\left(\mathrm{cam}\right.$ at $30^{\circ}$ )	$1.5 \mathrm{~m} / \mathrm{s}$ (cam at $30^{\circ}$ )	$1.5 \mathrm{~m} / \mathrm{s}\left(\mathrm{cam}\right.$ at $\left.30^{\circ}\right)$	$1.5 \mathrm{~m} / \mathrm{s}\left(\mathrm{cam}\right.$ at $\left.30^{\circ}\right)$

${ }^{(1)}$ Actuator VF L35 can only be used in safety applications if adjusted to its max. length, as shown in figure beside. If you need an adjustable lever for safety applications, use the adjustable safety lever VF L56.
${ }^{(2)}$ If installed with switch FL •58-M2-EX4 (e.g. FL 558-M2-EX4, FL 658-M2-EX4...) the actuator could mechanically interfere with the housing of the switch. The interference could happen or not according to the actuator and the head fixing position.


Safety switches with separate actuator


## Actuators

VF KEYF	VF KEYF1	VF KEYF2	VF KEYF3	VF KEYF7	VF KEYF8
Straight actuator	Angled actuator	Swivelling actuator	Actuator adjustable in two directions	Actuator adjustable in one direction	Universal actuator

IMPORTANT: These actuators can be used with items of the FL series only (e.g. FL 693-M2-EX4).
Low level coded actuators according to EN ISO 14119.

## Safety switches for hinges

Contact type: $\mathbf{L} \text { = slow action }$	
Contact blocks	
18 L	FL 1895-M2-EX4 $\Theta$ 1NO+1NC
20 L	FL 2095-M2-EX4 $\Theta$ 1NO+2NC
Min. force	$0,15 \mathrm{Nm}(0,4 \mathrm{Nm} \Theta)$
Travel diagrams Gen. Cat. Safety	page 75

【. If not expressly indicated in this chapter, for correct installation and utilization of all articles see chapter utilization requirements from page 235 to page 246.

Code	Approvals	Category	Zone	EPL
-EX4	Ex	II 3D Ex tc IIIC T80		

## Safety rope switch with reset for emergency stops

Contact type:
$\mathbf{L}$ = slow action
Contact blocks

## Accessories for rope installation

VF AF-TR5	VF AF-TR8	VF AF-MR5	VF AF-ME78	VF AF-ME80	VF F05-100	VF AF-IF1GR03	VF AF-CA5	VF AF-CA10
Adjustable stay bolt	Stay bolt	End clamp	Safety spring for longitudinal head	Safety spring for transversal head	$\begin{gathered} \text { Rope, } \varnothing 5 \\ \mathrm{~mm} \text {. } \\ 100 \mathrm{~m} \text { rolls } \end{gathered}$	Function indicator for ropes. Text "STOP"	Stainless steel pulley	Angular pulley, stainless steel

## Application examples and max. rope length


© If not expressly indicated in this chapter, for correct installation and utilization of all articles see chapter utilization requirements from page 235 to page 246.

Code Approvals	Category	Zone	EPL
-EX4 ¢ ¢x II 3D Ex tc IIIC $780^{\circ} \mathrm{C}$ Dc	3D	22	Dc

## Accessories

## ATEX cable gland, technopolymer

# data: 

ATEX marking: Body and ring material: Ambient temperature: Protection degree: Tightening torque:

〔Ex \| 2G 1D Ex and II tD A20 IP68
plastic PA V0 according to UL 94
$-20 \ldots+95^{\circ} \mathrm{C}$
IP68 ( $\leq 10$ bar)
$3 \ldots 4 \mathrm{Nm}$


Article	Description	ATEX certificate number	$\square_{M}$	N	0	P
VF PBM20C6P-2GD	M20x1.5 cable gland, technopolymer, for multipolar cables from Ø 6.5 to Ø 12 mm	DMT 02 ATEX E 047 X	24	9	24	M20x1.5

## ATEX cable gland, metal



## Technical data:

ATEX marking:
Body and ring material Ambient temperature: Protection degree: Tightening torque:

Exx\|2G Ex and II
区x \| ID ExtD A20 IP68
brass, nickel-plated
$-20 \ldots+95^{\circ} \mathrm{C}$
IP68 ( $\leq 10$ bar)
3 ... 4 Nm


Article	Description	ATEX certificate number	$\square_{M}$	N	0	P
VF PBM20C6M-2GD	M20x1.5 cable gland, brass, for multipolar cables from Ø 6 to Ø 12 mm	KEMA 99ATEX6971 X	24	9	24	M20x1.5

## Notes




## Main features

- Operating temperature up to $+180^{\circ} \mathrm{C}$
- Metal housing, one conduit entry
- Protection degree IP67


## Technical data

## Housing

Metal housing with anticorrosive surface treatment

One threaded conduit entry:
Protection degree:

M20 $\times 1.5$
IP67 according to EN 60529 with cable gland having equal or higher protection degree

## General data

Ambient temperature:

Max. actuation frequency:
Mechanical endurance:
Mounting position:
Safety parameters:
$\mathrm{B}_{10 \mathrm{~d}}$ :
2,000,000 for NC contacts
Mechanical interlock, not coded:
Tightening torques for installation:
(1) One operation cycle means two movements, one to close and one to open contacts, as defined in
EN 60947-5-1. EN 60947-5-1.

## Cable cross section (flexible copper strands)

## Contact block 20:

$\min$.	$1 \times 0.34 \mathrm{~mm}^{2}$	$(1 \times$ AWG 22$)$
$\operatorname{max.}$	$2 \times 1.5 \mathrm{~mm}^{2}$	$(2 \times$ AWG 16$)$

## In conformity with standards:

IEC 60947-5-1, EN 60947-5-1, EN 60947-1, EN 50041, IEC 60204-1, EN 60204-1,
EN ISO 14119, EN ISO 12100, IEC 60529, EN 60529, UL 508, CSA 22.2 No. 14.

## In conformity with the requirements of:

Low Voltage Directive 2006/95/EC, Machinery Directive 2006/42/EC and
EMC Directive 2004/108/EC.
Positive contact opening in conformity with standards:
IEC 60947-5-1, EN 60947-5-1.

Installation for safety applications:
Use only switches marked with the symbol $\Theta$ aside the product code. Always connect the safety circuit to the NC contacts (normally closed contacts: 11-12, 21-22 or 31-32) as stated in standard EN 60947-5-1, encl. K, par. 2. Actuate the switch at least up to the positive opening travel shown in the travel diagrams on page 238. Operate the switch at least with the positive opening force, indicated between brackets below each article, aside the minimum force value.
§ If not expressly indicated in this chapter, for correct installation and utilization of all articles see chapter utilization requirements from page 235 to page 246.


## Adjustable levers

For switches with swivelling lever the lever can be adjusted in $10^{\circ}$ steps over the entire $360^{\circ}$ range. The positive movement transmission is always guaranteed thanks to the particular geometrical coupling between the lever and the revolving shaft as prescribed for safety applications by the German standard BG-GS ET-15.

## Overturning levers

Negli interruttori a leva girevole è possibile fissare la leva dritta o rovescia mantenendo I'accoppiamento positivo.
In questo modo si possono avere due diversi piani di lavoro della leva.


## Orientable heads

In all switches, it is possible to rotate the


## Dimensional drawings

Contact type:
$\mathbf{L}$ = slow action
Contact blocks

## IMPORTANT

For safety applications: join only switches and actuators marked with symbol $\Theta$ aside the product code.
For more information about safety applications see details on page 235.

Special loose actuators					All measures in the drawings are in mm	
$\begin{gathered} \text { Stainless } \begin{array}{c} \text { steel } \\ \varnothing 20 \mathrm{~mm} \end{array} \\ \hline \text { roller } \end{gathered}$	Adjustable round rod $\varnothing 3 \times 125 \mathrm{~mm}$	Adjustable square rod $3 \times 3 \times 125 \mathrm{~mm}$	Stainless steel roller $\varnothing 20 \mathrm{~mm}$	Stainless steel roller $\varnothing 20 \mathrm{~mm}$	Adjustable actuator with $\varnothing$ 20 mm stainless steel rollers	Stainless steel roller $\varnothing 20 \mathrm{~mm}$
VF L31-R24T2 $\Theta$	VF L32-T2	VF L33-T2	VF L51-R24T2 $\Theta$	VF L52-R24T2 $\Theta$	VF L56-R24T2 $\Theta$	VF L57-R24T2 $\Theta$



## Main features

- Operating temperature up to $+120^{\circ} \mathrm{C}$
- Technopolymer housing
- High reliability contacts
- 4 terminal types available
- 16 actuators available
- Versions with positive opening $\Theta$
- Versions with gold-plated silver contacts


## Markings and quality marks:

C $\in$ EII
EAC approval:
RU C-IT ДМ94.В. 01024

## Technical data

## Housing

Housing made of glass fiber reinforced technopolymer, self-extinguishing and shockproof.
Protection degree: IPOO (terminals)
IP40 (electrical contacts)
according to EN 60529

## General data

Ambient temperature: $\quad-25^{\circ} \mathrm{C} \ldots+120^{\circ} \mathrm{C}$
Max. actuation frequency:
3600 operating cycles ${ }^{1} /$ hour
Mechanical endurance:
500.000 operating cycles ${ }^{1}$

Safety parameters:
$\mathrm{B}_{10 \mathrm{~d}}$ : 1,000,000 for NC contacts
Tightening torques for installation: see page 212
(1) One operation cycle means two movements, one to close and one to open contacts, as defined in EN 60947-5-1.

Cable cross section (flexible copper strands)
MK series: $\quad \min . \quad 1 \times 0.34 \mathrm{~mm}^{2} \quad(1 \times$ AWG 22)
$\max .2 \times 1.5 \mathrm{~mm}^{2} \quad(2 \times$ AWG 16)

In conformity with standards:
IEC 60947-5-1, EN 60947-5-1, IEC 60529, EN 60529, EN 60947-1, IEC 60947-1

## In conformity with the requirements of:

Low Voltage Directive 2006/95/EC, Machinery Directive 2006/42/CE and EMC Directive 2004/108/EC.
Positive contact opening in conformity with standards:
IEC 60947-5-1, EN 60947-5-1.

## Installation for safety applications:

Use only microswitches marked with the symbol $\Theta$ aside the product code. Always connect the safety circuit to the NC contacts (normally closed contacts) as stated in standard EN 60947-5-1, encl. K, par. 2. Actuate the switch at least up to the positive opening travel (CAP) stated aside the article code. Actuate the switch at least with the positive opening force (FAP) stated aside the article code.
§ If not expressly indicated in this chapter, for correct installation and utilization of all articles see chapter utilization requirements from page 235 to page 246.

Electrical data		Utilization category
Thermal current (Ith):   Rated insulation voltage (Ui):   Rated impulse withstand voltage ( $\mathrm{U}_{\mathrm{imp}}$ ):   Conditional short circuit current:   Protection against short circuits:   Pollution degree:   Dielectric strength	```16 A 250 Vac 300 Vdc 4 kV 1000 A according to EN 60947-5-1 type gG fuse 16 A 250 V 3 2000 Vac/min.```	

## Terminals outline dimensions



Screw terminals $\mathbf{V}$ with plate


Vertical faston $\mathbf{H}$ terminals


Faston terminals $\mathbf{F}$, right bending


Faston terminals G, left bending (on request)

Note: H vertical faston terminals can be bent according to one's installation requirements.
We recommend to bend the faston with an angle not higher than $45^{\circ}$ and to carry out this operation no more than 5 times

## Circuit diagram



Contacts with single interruption and double contacts

With direct and back direct action (F, D)


## Actuation forces and travels



## Code structure

Attention! The feasibility of a code number does not mean the effective availability of a product. Please contact our sales office.


Microswitch for high temperature MK series






## Tightening torques



Tighten the nuts 1 with a torque of $\mathbf{2} \ldots \mathbf{3} \mathrm{Nm}$
Tighten the head screws 2 with a torque of $\mathbf{0 . 4} \ldots \mathbf{0 . 5} \mathrm{Nm}$.
Tighten the M4 screws ${ }^{3}$ with a torque of $\mathbf{0 . 8} \ldots \mathbf{1 . 2} \mathrm{Nm}$, insert washer and spring washer.
Attention: A tightening torque higher than 1.2 Nm can cause the breaking of the microswitch, only fix on even surfaces.


Tighten the terminal screws 4 with a torque of $\mathbf{0 . 6} \ldots \mathbf{0 . 8} \mathrm{Nm}$.



## Main features

- Adjustable intervention point
- Output signals without bounces
- Two static outputs 1NO and 1NC
- Reduced actuating force
- Signal LEDs for power supply and switching
- Minimum differential travel


## Markings:

C 6 En
EAC approval: RU C-IT ДM94.В. 01024

## In conformity with the requirements of:

Low Voltage Directive 2006/95/EC,
Machinery Directive 2006/42/EC and
EMC Directive 2004/108/EC.

## Description

The article E1 is an electronic contact block, designed to replace the traditional mechanical contact block placed inside the position switches of Pizzato Elettrica. The combination between the body and the head of a position switch with this electronic contact block makes a mechatronic device that increases the application range of position switches.

## General data

Ambient temperature:
Max. actuation frequency:
Mechanical endurance:
Adjustable operating distance: Differential travel:
Tightening torques for installation:
$-25^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$
3600 operating cycles ${ }^{1} /$ hour
20 million operating cycles ${ }^{1}$
$0.2 \ldots 2 \mathrm{~mm}$ or $2^{\circ} \ldots 30^{\circ}$
$<0.1 \mathrm{~mm}$ or $<1^{\circ}$
see pages 235-246
(one one contacts, as defined in EN 60947-5-1.

## Electrical data

Rated operating voltage (Ue):	$10 \ldots 30 \mathrm{Vdc}$
Rated operating current (le):	200 mA
Utilization category:	$\mathrm{DC} 13,24 \mathrm{~V} 0,2 \mathrm{~A}$
Rated insulation voltage (Ui):	30 V
Pollution degree:	3
Conditional short circuit current:	100 A
Voltage drop (Ud):	2 V
Minimum operating current (Im):	0 mA
Current in locked state (Ir):	0.05 mA
Maximum residual ripple:	$10 \%$
Current consumption w/o load (lo):	$<10 \mathrm{~mA}$
Load short circuit protection:	yes
Inverse-polarity protection:	yes
Output type:	PNP
Supply LED:	yes
Switching LED:	yes
Protection fuse:	315 mA fast

Cable cross section (flexible copper strands)
Contact block E1

$\min$.	$1 \times 0.5 \mathrm{~mm}^{2}$	$(1 \times$ AWG 20$)$
$\operatorname{max.}$	$1 \times 2.5 \mathrm{~mm}^{2} \quad(1 \times$ AWG 14$)$	

## In conformity with standards:

IEC 60947-5-1, EN 60947-5-1, IEC 60529, EN 60529.
© If not expressly indicated in this chapter, for correct installation and utilization of all articles see chapter utilization requirements from page 235 to page 246.

## Parallel connection of several units E1 (OR)

The connection of many electronic contact blocks (OR) in parallel does not require any special precaution. With inductive loads (relay) it is advisable to install a protection diode.


## Connection diagram

The wiring connection comes through a marked terminal block indicating the function of each pole. There are two signal LEDs: the first one shows power supply presence and the second shows the switching state.


## Main features

The contact block E1 consists of a photoelectric sensor that checks the position of the mechanic actuator, with the following features:

1) Feasibility of adjusting the switching point by a screw directly applied on the contact block. The adjusting screw is positioned on the cap of the contact block, in order to offer an easy setting point, without extracting the contact block from the switch body
2) Differential travel below 0.1 mm , guaranteed over the entire operating temperature range.
3) Reduced actuating force.
4) Two static PNP output, 1NO+1NC, short circuit protected
5) Exit signal without bounce.
6) Wide range of operating temperatures.
7) Signal LEDs for power supply and switching

These functionalities allow to resolve the following problems: 1) When interfacing the switches with PLC there are problems because of contacts bouncing or in case of very low voltages.
2) When it is necessary to sense light objects which require a contact block with high sensibility and reduced actuating forces.
3) When it is necessary to sense very small objects which require a very low differential travel.
4) When it is requested to adjust the operating point. The internal LED shows the switching point when you turn the adjusting screw.
5) In cases where the perfectly simultaneous commutation of the two outputs is required.
6) When it is necessary to detect transparent objects, or where the use of normal sensors is not feasible, keeping in mind that special sensors normally have a higher price than this solution.


## Advice for installation

These switches are protected against electric interference of industrial environment. When used under extreme conditions, as for example installed close to high surge voltages (electric motors, welding machines, etc.), it is advisable to adopt the following precautions:

- Exclude or limit the interference from the source.
- Filter the power supply with adequate capacitor
- Separate the power cables from the switch cables.
- Limit the cable length to max. 200 m.

Check the voltage drop along the power supply lines.
When necessary, twist and shield the output wires of the switches or use a suitable twisted and shielded wire with a suitable cross section.

## Series connection of several units E1 (AND)

To connect the units in series (AND), it is necessary to comply with the following conditions:
The electric current of the first unit is the addition of the electric load and the max. load absorbed by the other switches. If we consider the connection of $n$ units, the nominal current " $l e$ ", results:
$l e=(200-20 \times n) \mathrm{mA}$

With le: rated operating current
$n$ : number of switches connected in series
Example: with 3 switches you can switch maximum 140 mA .
In connected-through state, each switch causes a voltage drop. The load should be suitable to work with a voltage of:
$U_{c}=U a-2 \times n$
With Uc: rated operating voltage of the load
Ua: used supply voltage
$n$ : number of switches connected in series
Example: with 3 switches powered at 24 Vdc , the load must be able to work at 18 Vdc .

The maximum number of switches that can be connected in series depends on the supply voltage used. In any case, the number should be lower than:

$$
\begin{aligned}
& n_{\max } \leq \frac{\text { Va }-10}{2}+1 \\
& \text { With } \quad \begin{array}{l}
n_{\max } \text { max. number of units connected in series } \\
\text { Va: supply voltage used }
\end{array}
\end{aligned}
$$

Example: with 24 Vdc it is possible to connect a maximum of 7 switches. With 30 Vdc it is possible to connect 11 switches.

With inductive loads (relay) it is advisable to install a protection diode.


## Special loads

The switch is protected against overload and short-circuit, so it is necessary to limit the inrush current of the electric load. Typical examples are capacitors, which require a high current impulse during their load, and incandescence lamps, the electric resistance of which is the tenth part of the hot electric resistance. For the capacitive loads, when necessary, connect a limit resistance in series, whereas for the lamps, when necessary, use a suitable electric resistance of pre-heating.

## Utilization limits

- Not suitable for installations for safety applications
- Can only be applied with FD, FP, FL, FR, FM, FX and FZ series position switches.



## Main features

- Technopolymer housing
- Protection degree IP20 (terminals),

IP40 (contacts)

- 14 contact blocks available
- Actuators with plastic or metal button
- contact block with positive opening $\Theta$
- For internal use in PA, PX, PC series foot switches


## Markings and quality marks:

## 

UL approval:	E131787
CCC approval:	2013010305600704
EAC approval:	RU C-IT ДM94.B.01024

## Technical data

## Housing

Housing made of glass fiber reinforced technopolymer, self-extinguishing and shockproof
Protection degree: IP20 (terminals), IP40 (contacts) according to EN 60529

## General data

Ambient temperature: $-40^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$
Safety parameters:
$\mathrm{B}_{10 \mathrm{~d}}$ :
Max. actuation frequency:
40,000,000 for NC contacts
Max. actuation frequency.
3600 operating cycles ${ }^{1} /$ hour
Mechanical endurance: 20 million operating cycles ${ }^{1}$
Max. actuation speed:
$0.5 \mathrm{~m} / \mathrm{s}$
$1 \mathrm{~mm} / \mathrm{s}$ (slow action)
$0.01 \mathrm{~mm} / \mathrm{s}$ (snap action)
$0.6 \ldots 0.8 \mathrm{Nm}$
Tightening torques screws contact blocks
(1) One operation cycle means two movements, one to close and one to open contacts, as defined in EN 60947-5-1

Cable cross section (flexible copper strands)
Contact blocks $5,6,7,9,10,11,12,13,14,15,18,37,66,67$ : min. $1 \times 0.5 \mathrm{~mm}^{2} \quad(1 \times$ AWG 20) max. $2 \times 2.5 \mathrm{~mm}^{2}$ ( $2 \times$ AWG 14)

## In conformity with standards:

IEC 60947-5-1, EN 60947-5-1, EN 60947-1, IEC 60204-1, EN 60204-1, EN ISO 14119, EN ISO 12100, IEC 60529, EN 60529, UL 508, CSA 22.2 No. 14.

## Approvals:

UL 508, CSA 22.2 No.14, EN 60947-1, EN 60947-5-1

## In conformity with the requirements of:

Low Voltage Directive 2006/95/EC, Machinery Directive 2006/42/EC and
EMC Directive 2004/108/EC.
Positive contact opening in conformity with standards:
IEC 60947-5-1, EN 60947-5-1.

Installation for safety applications:
Use only switches marked with the symbol $\Theta$ aside the product code. Always connect the safety circuit to the NC contacts (normally closed contacts: 11-12, 21-22 or 31-32) as stated in standard EN 60947-5-1, encl. K, par. 2. Actuate the switch at least up to the positive opening travel shown in the travel diagrams. Operate the switch at least with the positive opening force, indicated between brackets below each article, aside the minimum force value.

Electrical data		Utilization category			
Thermal current (lth):	10 A	Alternating current: AC15 ( $50 \div 60 \mathrm{~Hz}$ )			
Rated insulation voltage (Ui):	500 Vac 600 Vdc	Ue (V)	250	400	500
Rated impulse withstand voltage ( $\mathrm{U}_{\text {imp }}$ ):	6 kV	le (A)	6	4	1
Conditional short circuit current: imp	1000 A according to EN 60947-5-1	Direct c	ent: D		
Protection against short circuits:	type aM fuse 10 A 500 V	Ue (V)		125	250
Pollution degree:	$3$	le (A)	6	1.1	0.4

## Characteristics approved by UL

Utilization categories Q300 (69 VA, 125 ... 250 Vdc )
A600 (720 VA, 120 ... 600 Vac )
Characteristics of the housing: open type
For all contact blocks use 60 or $75^{\circ} \mathrm{C}$ copper ( Cu ) conductor, rigid or flexible, wire size AWG 12-14. Terminal tightening torque of 7.1 lb in ( 0.8 Nm ).

In conformity with standard: UL 508, CSA 22.2 N. 14

## Description

Contact blocks with captive screws, finger protection and self-lifting clamping screw plates. With NC contacts with positive opening for safety applications. Fitted with twin bridge contacts, they are particularly suitale for high-reliability applications.
Suitable for the installation inside foot switches series PA, PX and PC.

Dimensional drawings All measures in the drawings are in mm

	Technopolymer button	Metal button	
5 R	VF B501 $\Theta$ 1NO+1NC	VF B502 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	
6 -		VF B602 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	
7 L0	VF B701 $\quad$ 1 ${ }^{\text {d }}$ + +1 NC	VF B702 $\quad$ 1NO+1NC	$\underset{1.6}{0.3 .1}$
$9 \square$	VF B901 $\Theta 2 N C$	VF B902 $\Theta 2 \mathrm{NC}$	$0 \quad \stackrel{2.9}{ }+\stackrel{4.46}{\square}$
$10 \square$	VF B1001 2NO	VF B1002 2NO	
11 R	VF B1101 $\Theta$ 2NC	VF B1102 $\Theta$ 2NC	$\underbrace{\frac{2}{2} \stackrel{\ominus}{*}_{4}^{4}}_{0.6}$
12 R	VF B1201 2NO	VF B1202 2NO	$\stackrel{6}{\stackrel{0}{\overline{\mid c}_{1.5}^{2.9}}}$
13 LV	VF B1301 $\Theta$ 2NC	VF B1302 $\Theta$ 2NC	
14 LS	VF B1401 $\Theta$ 2NC	VF B1402 $\Theta$ 2NC	
15 LS	VF B1501 2NO	VF B1502 2NO	$\begin{aligned} & 0 \quad 1.4 \\ & \underbrace{}_{3} \quad 6 \end{aligned}$
18 LA	VF B1801 $\Theta$ 1NO+1NC	VF B1802 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	
37 L	VF B3701 $\Theta$ 1NO+1NC	VF B3702 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	
66 L	VF B6601 $\Theta$ 1NC	VF B6602 $\Theta$ 1NC	
67 L	VF B6701 1NO	VF B6702 1NO	$0 \quad 1.4$
Max. speed	0,5 m/s	0,5 m/s	
Min. force	$8 \mathrm{~N}(20 \mathrm{~N} \Theta)$	$8 \mathrm{~N}(20 \mathrm{~N} \Theta)$	

## Legend

- Closed contact $\mid \rightleftharpoons$ Open contact $\mid \Theta$ Positive opening travel according to IEC 60947-5-1

Pushing the switch / $\downarrow$ Releasing the switch

## Code structure



## FR 573-M2 signalling switches with stable contact




The switch is activated by pulling the connected rope, operates in stable position mode.
This means that the first activation closes the contacts, the following activation opens them, and so on.

Such solution has been specifically studied to be applied in all those situations where a nonstable position switch is generally used to control a step-by-step relay, such as for example devices for switching on/off the inside lights or opening/closing the gates.

Thanks to this stable position function, for example, a first pull of the rope switches on a lighting system, which can later be switched off by means of a subsequent pulling action.

Therefore, the use of the switch on its own makes it unnecessary to have any combined solutions with step-by-step relays and respective wiring, thus remarkably simplifying all installation operations.

For more information, see the Pizzato Elettrica Lifts General Catalogue 2015-2016.

## Switches with electrical reset FT series



When the FT series safety switches with reset are operated they remain switched and they reset electrically through the integrated solenoid. Thanks to this feature it's possible to remote reset the switch without being physically near it.
They are available with 3 supply voltages ( $24 \mathrm{Vdc}, 48 \mathrm{Vdc}, 230 \mathrm{Vac}$ ), with different actuators and they are adapt to many applications, particularly to the lift, the over-speed governor and generally to the safety field. Some items can also be supplied with the manual reset.
Furthermore Pizzato Elettrica has introduces a new adjustment system integrated in the switch: this system, purposely designed for over-speed devices, allows a very sensitive adjustment of the switch position along its vertical axis.
For more information, see the Pizzato Elettrica Lifts General Catalogue 2015-2016.


## Switches for switching cabinets FR 5F1-M2, FR 10F1-M2

Switches FR 5F1-M2 and FR 10F1-M2 can be installed on doors of switching cabinets. They are used to switch on possible signal devices, once the door is open (e.g. three-phase flashing devices, etc.). The operator assigned to the board maintenance may simulate the closing of the door by pushing the blue button. At the end of the maintenance the functionality of the switch will be automatically re-established easily by closing the door of the cabinet.


§ If not expressly indicated in this chapter, for correct installation and utilization of all articles see chapter utilization requirements from page 235 to page 246.

## Switches for switching cabinets FR 37F1-M2



The operation of this switch is similar to that of the one described above.
When the button of the switch is pressed, it simulates the door closing operation, therefore the auxiliary circuit is newly supplied with power and the light remains on; it will only go off after the door has been closed.


[^6]
## Description

Pizzato Elettrica offers a wide range of products suitable for places where chemical and corrosive
 agents are used and for aseptic places where particular attention must be paid to cleanliness and hygiene.
The technopolymer housings and external metal parts in stainless steel allow these devices to be used for a variety of applications, ranging from the food and pharmaceutical sectors to the chemical and marine sectors.

## Main features:

-Technopolymer housing

- External metallic parts in stainless steel only
- Protection degree IP67 (FR, FX, FK, FW, FP series switches)
- Protection degree IP67 and IP69K (SR, ST, HX series sensors)


## Resistance against corrosion.

Substance	Stainless steel Technopolymer	Substance	Stainless steel Technopolymer
Acetylene	$\square \square$	Whisky malt	$\square \square$
Vinegar	$\square \square$	Molasses	$\square \square$
Acetone	$\square \square$	Nickel chloride	$\square \square$
Acetic acid	$\square \square$	Aluminium nitrate	$\square \square$
Boric acid	$\square \square$	Combustible oils	$\square \square$
Citric acid	$\square \square$	Tanning oil	$\square$
Hydrochloric acid 100\%	$\square \quad \square$	Linseed oil	$\square \square$
Chromic acid 5\%	$\square \square$	Hydraulic oil (synthetic)	$\square \square$
Hydrofluoric acid 100\%	$\square \square \square$	Hydraulic oil (synthetic)	$\square \square$
Formic acid	$\square \square$	Mineral Oil	$\square \square$
Phosphoric acid (<40\%)	$\square \square$	Motor Oil	$\square \square$
Lactic acid	$\square \square$	Transformer oil	$\square \square$
Nitric acid (concentrated)	$\square \square$	Paraffin	$\square \square$
Oleic acid	$\square \square$	Potassium chloride	$\square \square$
Sulphuric acid (<10\%)	$\square \square$	Potassium hydroxide (caustic potash)	$\square \square$
Sulphuric acid (10-75\%)	$\square \quad \square$	Potassium sulphate	$\square \square$
Sulphuric acid (75-100\%)	$\square$	Propane (liquid)	$\square \square$
Stearic acid	$\square \square$	Copper sulphate > 5\%	$\square \square$
Tartaric acid	$\square \square$	Liquid soaps	$\square \square$
White water	$\square \square$	Chocolate syrup	$\square \square$
Sea water	$\square \square$	Milk whey	$\square$
Distilled water	$\square \square$	Sodium bicarbonate	$\square \square$
White spirit	$\square \square$	Sodium bisulphate	$\square \square$
Ethyl alcohol	$\square \square$	Sodium carbonate	$\square \square$
Methyl alcohol	$\square \square$	Sodium chloride	$\square \square$
Liquid ammonia	$\square \square$	Sodium hydroxide (80\%)	$\square \square$
Ammonium acetate	$\square \square$	Sodium hypochlorite (100\%)	$\square \square \square$
Ammonium carbonate	$\square \square$	Sodium nitrate	$\square \square$
Ammonium sulphate	$\square \square$	Sodium sulphate	$\square \square$
Leaded petrol	$\square \square$	Sodium sulphide	$\square \square$
Unleaded petrol	$\square \square$	Aluminium sulphate	$\square \square$
Benzol	$\square \square$	Ferrous sulphate	$\square \square$
Beer	$\square \square$	Calcium hydroxide	$\square \square$
Butane	$\square \square$	Potassium hydroxide	$\square \square$
Butanol	$\square \square$	Sodium hydroxide	$\square$
Quicklime	$\square \square$	Tanning solutions	$\square \square$
Calcium chloride	$\square \square$	Photographic solutions	$\square$
Calcium hydroxide	$\square \square$	Fruit juice	$\square \square$
Chloroform	$\square \square$	Vegetable juice	$\square \square$
Aluminium chloride	$\square \square$	Toluene	$\square \square$
Ferrous chloride	$\square \square \square$	Transparent (paint)	$\square$
Chromium plate	$\square \square$	Trichloroethylene	$\square \square$
Diesel	$\square \square$	Whisky and wine	$\square \square$
Ether	$\square \square$	Zinc plate	$\square \square$
Formaldehyde 100\%	$\square \square$	Zinc chloride	$\square \square$
Furfural	$\square \square$	Zinc sulphate	- ■
Gelatine	$\square \square$	Sulphur chloride	$\square \square$
Glycerine	$\square \square$	Sugar (liquid)	$\square \square$
Glucose	$\square \square$	Sugar beet	$\square \square$
Shellac (orange)	$\square \square$		
Hydrogen (gas)	$\square \square$		
lodine	$\square \square$		
Milk	$\square \square$		
Magnesium chloride	$\square \square$		
Magnesium hydroxide	$\square \square$	Resistance against corrosion.	
	$\square \square$		
Mayonnaise	$\square \square$	- No corrosion   - Possible corrosion   $\square$ Corrosion   - Data not available	


Contact type:
R $=$ snap action   $\mathbf{L}=$ slow action


		With external rubber gasket	With external rubber gasket	
5 R	FR 515-XM2 $\quad \Theta$ 1NO+1NC	FR 5A1-XM2 $\Theta$ 1NO+1NC	FR 520-XM2 1NO+1NC	FR 530-XM2V38 $\Theta$ 1NO+1NC
6 L	FR 615-XM2 $\quad \Theta$ 1NO+1NC	FR 6A1-XM2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$		FR 630-XM2V38 $\Theta$ 1NO+1NC
9 L	FR 915-XM2 $\quad \Theta$ 2NC	FR 9A1-XM2 $\Theta 2 N C$		FR 930-XM2V38 $\Theta$ 2NC
20 L	FR 2015-XM2 $\quad \Theta$ 1NO+2NC	FR 20A1-XM2 $\Theta$ 1NO+2NC	FR 2020-XM2 1NO+2NC	FR 2030-XM2V38 $\Theta$ 1NO+2NC
2 R	FR 215-XM2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC}$ )	FR 2A1-XM2 2x(1NO-1NC)	FR 220-XM2 2x(1NO-1NC)	FR 230-XM2V38 2x(1NO-1NC)
Max. speed	page 239 - type 2	page 239 - type 4	$1 \mathrm{~m} / \mathrm{s}$	page 239 - type 1
Min. force	$8 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$6 \mathrm{~N}(25 \mathrm{~N} \Theta)$	0.07 Nm	$0.06 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$
Travel diagrams	page 240 - group 1	page 240 - group 1	page 240 - group 4	page 240 - group 5


5 R	FR 531-XM2V38 $\Theta$ 1NO+1NC	FR 551-XM2V38 $\Theta$ 1NO+1NC	FR 554-XM2V38 $\Theta$ 1NO+1NC	FR 556-XM2V38 $\Theta$ 1NO+1NC
6 L	FR 631-XM2V38 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FR 651-XM2V38 $\Theta$ 1NO+1NC	FR 654-XM2V38 $\Theta$ 1NO+1NC	FR 656-XM2V38 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$
9 L	FR 931-XM2V38 $\Theta$ 2NC	FR 951-XM2V38 $\Theta 2 N C$	FR 954-XM2V38 $\Theta 2 N C$	FR 956-XM2V38 $\Theta 2 N C$
20 L	FR 2031-XM2V38 $\Theta 1 \mathrm{NO}+2 \mathrm{NC}$	FR 2051-XM2V38 $¢$ 1NO+2NC	FR 2054-XM2V38 $\Theta$ 1NO+2NC	FR 2056-XM2V38 $\Theta$ 1NO+2NC
2 R	FR 231-XM2V38 2x(1NO-1NC)	FR 251-XM2V38 2x(1NO-1NC)	FR 254-XM2V38 2x(1NO-1NC)	FR 256-XM2V38 2x(1NO-1NC)
Max. speed	page 239 - type 1			
Min. force	$0.06 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$			
Travel diagrams	page 240 - group 5			

All measures in the drawings are in mm
Accessories See page 225
The 2D/3D files are available at www.pizzato.com


		With external rubber gasket	With external rubber gasket	
5 R	FX 515-XM2 $\quad \Theta$ 1NO+1NC	FX 520-XM2 1NO+1NC	FX 525-XM2 1NO+1NC	FX 530-XM2V38 $\Theta$ 1NO+1NC
6 L	FX 615-XM2 $\quad \Theta$ 1NO+1NC			FX 630-XM2V38 $\Theta$ 1NO+1NC
9 L	FX 915-XM2 $\quad \Theta$ 2NC			FX 930-XM2V38 $\Theta$ 2NC
20 L	FX 2015-XM2 $\quad \Theta$ 1NO+2NC	FX 2020-XM2 1NO+2NC	FX 2025-XM2 1NO+2NC	FX 2030-XM2V38 $\Theta$ 1NO+2NC
2 R	FX 215-XM2 2x(1NO-1 NC )	FX 220-XM2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC})$	FX 225-XM2 2x(1NO-1NC)	FX 230-XM2V38 2x(1NO-1NC)
Max. speed	page 239 - type 2	$1 \mathrm{~m} / \mathrm{s}$	$1 \mathrm{~m} / \mathrm{s}$	page 239 - type 1
Min. force	$8 \mathrm{~N}(25 \mathrm{~N} \Theta)$	0.07 Nm	0.12 Nm	$0.06 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$
Travel diagrams	page 240 - group 1	page 240 - group 4	page 240 - group 4	page 240 - group 5



All measures in the drawings are in mm

[^7]

Contact blocks		With external rubber gasket	With external rubber gasket	
3 R	FK 315-XM1 1NO+1NC	FK 320-XM1 1NO-1NC	FK 325-XM1 1NO-1NC	FK 330-XM1V38 1NO+1NC
33 L		FK 3320-XM1 1NO+1NC	FK 3325-XM1 1NO+1NC	FK 3330-XM1V38 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$
34 L	FK 3415-XM1 $\Theta$ 2NC	FK 3420-XM1 2NC	FK 3425-XM1 2NC	FK 3430-XM1V38 $\Theta$ 2NC
Max. speed	page 239 - type 2	$1 \mathrm{~m} / \mathrm{s}$	$1 \mathrm{~m} / \mathrm{s}$	page 239 - type 1
Min. force	$8 \mathrm{~N}(25 \mathrm{~N} \Theta)$	0.05 Nm	0.1 Nm	$0.06 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$
Travel diagrams	page 240-group 1	page 240 - group 4	page 240 - group 4	page 240 - group 5


Contact blocks				
3 R	FK 331-XM1V38 1NO+1NC	FK 351-XM1V38 1NO+1NC	FK 354-XM1V38 1NO+1NC	FK 356-XM1V38 1NO+1NC
33 L	FK 3331-XM1V38 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FK 3351-XM1V38 $\Theta$ 1NO+1NC	FK 3354-XM1V38 $\Theta$ 1NO+1NC	FK 3356-XM1V38 $\Theta$ 1NO+1NC
34 L	FK 3431-XM1V38 $\Theta$ 2NC	FK 3451-XM1V38 $\Theta$ 2NC	FK 3454-XM1V38 $\Theta$ 2NC	FK 3456-XM1V38 $\Theta 2 N \mathrm{C}$
Max. speed	page 239 - type 1			
Min. force	$0.06 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$			
Travel diagrams	page 240 - group 5			



Contact blocks				
5 R	FP 510-XM2 $\Theta$ 1NO+1NC	FP 511-XM2 $\Theta$ 1NO+1NC	FP 516-XM2 $\Theta$ 1NO+1NC	
6 L	FP 610-XM2 $\Theta$ 1NO+1NC	FP 611-XM2 $\Theta$ 1NO+1NC	FP 616-XM2 $\Theta$ 1NO+1NC	
9 L	FP 910-XM2 $\Theta$ 2NC	FP 911-XM2 $\Theta$ 2NC	FP 916-XM2 $\Theta$ 2NC	
20 L	FP 2010-XM2 $\Theta$ 1NO+2NC	FP 2011-XM2 $\Theta$ 1NO+2NC	FP 2016-XM2 $\Theta$ 1NO+2NC	
2 R	FP 210-XM2 2x(1NO-1NC)	FP 211-XM2 2x(1NO-1NC)	FP 216-XM2 2x(1NO-1NC)	
Max. speed	page 237 - type 4	page 237 - type 4	page 237 - type 2	
Min. force	$11 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$8 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$8 \mathrm{~N}(25 \mathrm{~N} \Theta)$	
Travel diagrams	page 238 - group 1	page 238 - group 1	page 238 - group 1	


Safety switches for hinges			All measures in the drawings are in mm
Contact type:   $\mathbf{L}$ = slow action   Contact blocks			
98 L	FR 1896-XM2 $\Theta$ 1NO+1NC	FX 1896-XM2 $\Theta$ 1NO+1NC	
9 L	FR 996-XM2 $\Theta$ 2NC	FX 996-XM2 $\Theta$ 2NC	
20 L	FR 2096-XM2 $\Theta$ 1NO+2NC	FX 2096-XM2 $\Theta$ 1NO+2NC	
33 L			FK 3396-XM1 $\Theta$ 1NO+1NC
34 L			FK 3496-XM1 $\Theta$ 2NC
Min. force	0,15 Nm (0,4 Nm $\Theta$ )	0,15 Nm (0,4 Nm $\Theta$ )	$0,15 \mathrm{Nm}(0,4 \mathrm{Nm} \Theta)$
Travel diagrams	page 242 - group 9	page 242 - group 9	page 242-group 9

§ If not expressly indicated in this chapter, for correct installation and utilization of all articles see chapter utilization requirements
from page 235 to page 246 .




#### Abstract

These standard M12 plugs are ready for the installation on the switches. Their wires have the right length for the connection to the contact blocks and are provided with wire-end sleeves. On request they can be delivered already wired to the switch. The connectors are used where a very short machine down time is required (e.g. in big plants). The switch with connector can be replaced with an identical one very quickly, avoiding the possibility of incorrect wiring.


## Technical data:

Max. operating voltage:
Max. operating current:

Protection degree: Ambient temperature:
Tightening torque:
Wire cross-section:

Contact type:
Conductor configuration

4 poles		5 poles	8 poles	12 poles
$2\left(\begin{array}{l} 1 \\ \bullet \\ 0 \end{array}\right.$				
		Pin Colour	Pin Colour	Pin Colour
1	Brown	1 Brown	1 White	1 Brown
2	White	2 White	2 Brown	2 Blue
3	Blue	3 Blue	3 Green	3 White
4	Black	4 Black	4 Yellow	4 Green
		5 Grey	5 Grey	5 Pink
			6 Pink	6 Yellow
			7 Blue	7 Black
			8 Red	8 Grey
				9 Red
				10 Purple
				11 Grey-Pink
				12 Red-Blue

## Code structure

Attention! The feasibility of a code number does not mean the effective availability of a product. Please contact our sales office.

## VF CNM5MM-L100

## Body material

M metal
P plastic
No. of poles
44 poles
5 5poles
88 poles
1212 poles

250 Vac / 300 Vdc (4/5 poles)
$30 \mathrm{Vac} / 36 \mathrm{Vdc}$ ( $8 / 12$ poles)
4 A ( $4 / 5$ poles)
2 A (8 poles)
1.5 A (12 poles)

IP67 acc. to EN 60529
$-25^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$
1 ... 1.5 Nm
$0.5 \mathrm{~mm}^{2}$ (20 AWG) for $4 / 5$ poles
$0.25 \mathrm{~mm}^{2}$ (24 AWG) for 8 poles
$0.14 \mathrm{~mm}^{2}$ (26 AWG) for 12 poles
gold-plated


## Technical data:

- Polyurethane connector body (4/5/8 poles)
- Polypropylene connector body (12 poles)
- Class 6 rated copper of the wires acc. to IEC 60228 for mobile installation (4/5/8 poles)
- Class 5 rated copper of the wires acc. to IEC 60228 for fixed installation (12 poles)
- Gold-plated contacts (resistance $<5 \mathrm{~m} \Omega$ )
- Self locking ring nut
- High flexibility wire suitable to be used in movable chains, with PVC sheath conforming to IEC 60332-3 and CEI 20-22II standards. With polyurethane sheath on request (4/5/8 poles)
- PVC cable, fixed installation (12 poles)


## Technical data:

Max. operating voltage
Max. operating current:
Protection degree:

Ambient temperature:

Wire cross-section:

Minimum bending radius: Conductor configuration

4 poles	5 poles
$\left.{ }_{4}^{1} \begin{array}{l} 0 \\ 0 \\ 0 \\ 0 \end{array}\right)^{2}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 3 \end{aligned}$


Pin	Colour	Pin	Colour	Pin	Colour	Pin	Colour
1	Brown	1	Brown	1	White	1	Brown
2	White	2	White	2	Brown	2	Blue
3	Blue	3	Blue	3	Green	3	White
4	Black	4	Black	4	Yellow	4	Green
		5	Grey	5	Grey	5	Pink
				6	Pink	6	Yellow
			7	Blue	7	Black	
			8	Red	8	Grey	
					9	Red	
					10	Purple	
					11	Grey-Pink	
					12	Red-Blue	

$250 \mathrm{Vac} / 300 \mathrm{Vdc}$ ( $4 / 5$ poles)
$30 \mathrm{Vac} / 36 \mathrm{Vdc}(8 / 12$ poles)
4 A (4-5 poles) 2 A ( 8 poles) 1.5 A (12 poles)
IP67 acc. to EN 60529
P69K acc. to ISO 20653
(Protectthe cablesfromdirecthigh-pressureandhigh-temperaturejets)
$-25^{\circ} \mathrm{C} \ldots+90^{\circ} \mathrm{C}$ for fixed installation ( $4 / 5 / 8$ poles)
$-15^{\circ} \mathrm{C} \ldots+90^{\circ} \mathrm{C}$ for mobile installation ( $4 / 5 / 8$ poles)
$-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$ for fixed installation ( 12 poles)
$0.34 \mathrm{~mm}^{2}$ (22 AWG) for 4 poles
$0.25 \mathrm{~mm}^{2}$ (24 AWG) for $5 / 8$ poles
$0.14 \mathrm{~mm}^{2}$ (26 AWG) for 12 poles
$>$ cable diameter $\times 10$

$\varnothing \mathrm{d}: 5 \mathrm{~mm}$ for 4 and 5 poles 6 mm for 8 poles 6.5 mm for 12 poles

## Code structure

Attention! The feasibility of a code number does not mean the effective availability of a product. Please contact our sales office.
VF CA4PD3M

No. of poles	
$\mathbf{4}$	$\mathbf{4}$ poles
$\mathbf{5}$	5 poles
$\mathbf{8}$	$\mathbf{8}$ poles
$\mathbf{1 2}$	12 poles


Sheath coating	
P	PVC (standard)
U	PUR


Connector type	
D	straight (standard)
G	angled



ATTENTION: always cut off the power supply before disconnecting the connector. The connector is not suitable for separation of electrical loads.

## Accessories

## Extension cable with M12 connectors



## Technical data:

Polyurethane connector body
Class 6 rated copper of the wires acc. to IEC 60228
Gold-plated contacts (resistance $<5 \mathrm{~m} \Omega$ )
Self locking ring nut
High flexibility cable suitable to be used in drag chains, with PVC sheath conforming to IEC 60332-3 and CEI 20-22II standards

## Technical data:

Max. operating voltage:
Max. operating current: Protection degree:
Ambient temperature
Wire cross-section:
Minimum bending radius:

250 Vac / 300 Vdc (5 poles) $30 \mathrm{Vac} / 36 \mathrm{Vdc}$ (8 poles) 4 A (5 poles) 2 A (8 poles) IP67 acc. to EN 60529
$-25^{\circ} \mathrm{C} \ldots+90^{\circ} \mathrm{C}$ for fixed installation $-15^{\circ} \mathrm{C} \ldots+90^{\circ} \mathrm{C}$ for mobile installation $0.5 \mathrm{~mm}^{2}$ (20 AWG) (5 poles) $0.25 \mathrm{~mm}^{2}$ (24 AWG) (8 poles) > cable diameter x 10

## Code structure

## VF CA5PD3M-MD



ø d: 7 mm for 5 poles 6 mm for 8 poles

## Conductor configuration



Articles
VF CA5PD3M-MD
VF CA5PD5M-MD
VF CA5PD0M-MD
VF CA8PD3M-MD
VF CA8PD5M-MD

M12 sockets, field wireable


## General data

Technopolymer connector body
Gold-plated contacts
Screw terminals for wiring Max. operating voltages

$$
250 \mathrm{Vac} / \mathrm{dc} \text { (4 and } 5 \text { poles) }
$$

$30 \mathrm{Vac} / \mathrm{dc}$ (8 poles)
Maximum current Protection degree Ambient temperature Wire cross-section
from $0.25 \mathrm{~mm}^{2}$ (24 AWG) to $0.5 \mathrm{~mm}^{2}$ (20 AWG)


Article	Description	no. of poles
VF CBMP4DM04	Field wireable M12 socket, straight, for multipolar cables from $\varnothing 4$ to $\varnothing 6.5 \mathrm{~mm}$	4
VF CBMP5DM04	Field wireable M12 socket, straight, for multipolar cables from $\varnothing 4$ to $\varnothing 6.5 \mathrm{~mm}$	5
VF CBMP8DM04	Field wireable M12 socket, straight, for multipolar cables from $\varnothing 4$ to $\varnothing 7 \mathrm{~mm}$	8

M12 plugs, field wireable


## General data

Technopolymer connector body
Gold-plated contacts
Screw terminals for wiring Max. operating voltages

Maximum current Protection degree Ambient temperature Wire cross-section
$250 \mathrm{Vac} / \mathrm{dc}$ (5 poles) $30 \mathrm{Vac} / \mathrm{dc}$ (8 poles) 4 A
IP67 acc. to EN 60529

$-25^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$
from $0.25 \mathrm{~mm}^{2}$ (24 AWG) to $0.5 \mathrm{~mm}^{2}$ (20 AWG)

Article	Description

## M12 connectors, $Y$-shaped, for series connections



Technical data:
Polyurethane connector body
Class 6 rated copper of the wires acc. to IEC 60228
Gold-plated contacts (resistance $<5 \mathrm{~m} \Omega$ )
Self locking ring nut
High flexibility cable suitable to be used in drag chains, with PVC sheath conforming to IEC 60332-3 and CEI 20-22II standards.

## Technical data:

Max. operating voltage Max. operating current:
Protection degree:
Ambient temperature:
tion
Wire cross-section: Minimum bending radius:
$30 \mathrm{Vac} / 36 \mathrm{Vdc}$
4 A (4-5 poles) 2 A (8 poles)
IP67 acc. to EN 60529
$-25^{\circ} \mathrm{C} \ldots+90^{\circ} \mathrm{C}$ for fixed installation
$-15^{\circ} \mathrm{C} \ldots+90^{\circ} \mathrm{C}$ for mobile installa-
$0.5 \mathrm{~mm}^{2}$ (22 AWG)
> cable diameter $\times 10$

Internal wiring diagram, Y -shaped connector
Conductor configuration


Article	Description
VF CY201P0	M12 connectors, Y-shaped, for series connections

## M12 terminating plugs for series connections



Internal wiring diagram of the terminating plug


Conductor configuration

Article

Description
VF CY100P0
M12 terminating plugs for series connections, 5 poles

## Accessories

## Series connection with Y-shaped M12 connectors

To facilitate and simplify the series wiring of the safety devices, a variety of accessories are available, designed specifically for this purpose. Based on the proven design of the M12 connector, which simply combines standard elements, category 4, PLe and SIL3 safety device chains are available, which can connect up to 32 devices in series. All of which is without the risk of connection errors and with a high IP67 protection degree. The safety chains are composed of a 24 Vdc power supply unit, a series of extension cables to reach the various devices in the field, Y connectors to branch away from the chain towards each individual device, and a terminator to close the end of the line.
A suitable safety module is used alongside the power supply unit to assess the state of the safety chain safe outputs.

## Items connected in series

The series may consist of both devices that are identical to one another (homogeneous series) or belong to different series (mixed series).
Only the following Pizzato Elettrica devices may be connected in series using the $Y$ connectors:
ST series safety sensors with RFID technology: ST D•31•M•,
ST D•71•M•
NG series safety switches with solenoid and RFID technology: Any item with an M12 connector for series connection with a "Y" connector or with option: K950, K951, K952
HX series safety hinge switches: HX BEE1- $\bullet \bullet M$


## Connection example and voltage drop verification

Attention! For proper operation of the devices connected in series via cables, Y connectors or junction boxes, it is necessary to pay particular attention to the voltage drop that occurs in the circuit. In particular, we must evaluate the currents involved and the sections/lengths of the cables used, to ensure that under real usage conditions the components at the end of the chain are supplied within permissible limits.

## Legend:

$L_{1} \quad$ length 1st section (m)
$L_{2} \quad$ length 2 nd section (m) length 3rd section (m) Supply voltage (V) voltage at point $1(\mathrm{~V})$ voltage at point 2 (V) voltage at point $3(\mathrm{~V})$
$1_{1} \quad$ transfer current 1 st section (A)
$1_{2}$ transfer current 2nd section (A)
$I_{3} \quad$ transfer current 3rd section (A)
$\rho \quad$ copper resistance $=0.018\left(\Omega \times \mathrm{mm}^{2} / \mathrm{m}\right)$
S wire cross-section ( $\mathrm{mm}^{2}$ )
SS1 safety sensor, 45 mA consumption (ST series)


SS2 safety switch with lock, 505 mA consumption (NG series)
(A): Extension cable with M12 connectors, $0,25 \mathrm{~mm}^{2}$ (VF CA8PD5M-MD)
(B): M12 connectors, Y-shaped (VF CY201P0)
(C): Terminating plugs for series connections (VF CY100P0)

Data:
$=\left.\right|_{{ }_{C s}}+\left.\right|_{S S 1}+\left.\right|_{S S 2}=60+45+505=610 \mathrm{~mA}$
$1_{2}=1_{\mathrm{SS} 2}=505 \mathrm{~mA}$
D): Extension cable with M12 connectors, $0,5 \mathrm{~mm}^{2}$ (VF CA5PD0M-MD)

## Calculations:

$V_{1}=V_{0}-\rho \times \frac{L_{1}}{S_{1}} \times I_{1}=24-0,018 \times \frac{10}{0,5} \times 0,61=23,7 \mathrm{~V}$
$V_{2}=V_{1}-\rho \times \frac{L_{2}}{S_{2}} \times I_{2}=23,7-0,018 \times \frac{10}{0,5} \times 0,505=23,5 \mathrm{~V}$
$V_{3}=V_{2}-\rho \times \frac{L_{3}}{S_{3}} \times I_{3}=23,5-0,018 \times \frac{5}{0,25} \times 0,505=23,3 \mathrm{~V}$
$I_{3}=I_{\text {SS2 }}=505 \mathrm{~mA}$
$\mathrm{V}_{0}=24 \mathrm{~V}$
$\mathrm{L}_{1}=10 \mathrm{~m}$
$\mathrm{L}_{2}=10 \mathrm{~m}$
$L_{3}=5 \mathrm{~m}$
$\mathrm{S}_{1}=0,5 \mathrm{~mm}^{2}$
$\mathrm{S}_{2}=0,5 \mathrm{~mm}^{2}$
$S_{3}=0,25 \mathrm{~mm}^{2}$

## Conclusions:

Given the minimum SS2 supply voltage which is equal to $24 \mathrm{~V}-10 \%=21.6 \mathrm{~V}$, which is $23.3 \mathrm{~V}>21.6 \mathrm{~V}$, the device chain described above can be classed as properly dimensioned.

Junction box for series connection of up to 4 devices

		Technical data:	
		Material:	Self-extinguishing shock-proof polycarbonate with double insulation, UV resistant fibreglass reinforced, with increased shock resistance.
		Screw material:	stainless steel
		Protection degree:	IP67 acc. to IEC 60529
			IP69K acc. to ISO 20653   with cable gland having equal or higher protection degree
		Conduit entries:	- 2 upper and lower inputs with knock out M20-1/2 NPT   - 2 side inputs with knock out M20-1/2 NPT - M25   -2 base inputs with knock out M16
		Ambient temperature:	$-40^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$
		Tightening torque of the cover screws:	$1 \ldots 1.4 \mathrm{Nm}$
		Connection system:	PUSH-IN spring type
		Cross-section of rigid wires and flexible wires with wire-end sleeve: min. $1 \times 0.34 \mathrm{~mm}^{2}(1 \times$ AWG 24) max. $1 \times 1.5 \mathrm{~mm}^{2}(1 \times$ AWG 16)	
		Wire cross-section with pre-insulated wire-end sleeve: $\min .1 \times 0.34 \mathrm{~mm}^{2}(1 \times$ AWG 24) max. $1 \times 0.75 \mathrm{~mm}^{2}(1 \times$ AWG 18)	
		Cable stripping length (x)	min.: 8 mm max.: 12 mm
Article	Description		
VF CY302P0	Junction bo	s connection of up to 4 devices	

## Conductor configuration



## Example of series connection of 4 NG series switches

Terminal box	Connection		Terminal box	Connection	
1A	A1	+24 Vdc supply input	1 C	A1	+24 Vdc supply input
2A	A2	0 V supply input	2 C	OS1	Safety output
3A	OS1	Safety output	3 C	A2	0 V supply input
4A	OS2	Safety output	4 C	IS1	Safety input
5A		Auxiliary connection		O3	Signalling output, actuator inserted
6 A		Auxiliary connection	5 C	O4	Signalling output, actuator inserted
7 A	OAUX1	Auxiliary output Oaux1			and locked
8A	OAUX2	Auxiliary output Oaux2	6 C	OS2	Safety output
9A	OAUX3	Auxiliary output Oaux3	7 C	IS2	Safety input
10A	OAUX4	Auxiliary output Oaux4	8C	14	Solenoid activation input



## Technical data:

All measures in the drawings are in mm
Polyurethane connector body
Class 6 rated copper of the wires acc. to IEC 60228
Gold-plated contacts (resistance $<5 \mathrm{~m} \Omega$ )
Self locking ring nut
High flexibility cable suitable to be used in drag chains, with PVC sheath conforming to IEC 60332-3 and CEI 20-22II standards.
With polyurethane sheath on request.


Max. operating voltage: $\quad 60 \mathrm{Vac} / 75 \mathrm{Vdc}$
Max. operating current: Protection degree:

Ambient temperature:
Wire cross-section: Minimum bending radius:
Codestructure Attention!Thefeasibility ofacodenumberdoesnotmeantheeffective availability ofaproduct. Pleasecontactoursales office VF CA4PD 3 K

4 A
P67 acc. to EN 60529
P69K acc. to ISO 20653
(Protect the cables from direct high-pressure and high-temperature jets)
$-25^{\circ} \mathrm{C} \ldots+90^{\circ} \mathrm{C}$ for fixed installation
$-15^{\circ} \mathrm{C} \ldots+90^{\circ} \mathrm{C}$ for mobile installation
$0.25 \mathrm{~mm}^{2}$ (24 AWG)
$>$ cable diameter $\times 10$

4 poles

Pin	Colour
1	Brown
2	White
3	Blue
4	Black

Connector type
D straight (standard)
G angled

Connection type
K M8x1
Cable length (L)
11 metre
22 metres
33 metres (standard)
44 metres
55 metres (standard)
...
10 metres
Other lengths on request

## Stock items

## VF CA4PD3K

 VF CA4PD5KAttention! No stock item, minimum order quantity 100 pcs.

M23 sockets, 12 poles, without cable


## Pin configuration

12 poles	
clockwise numbering	$\left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 02 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right)$   counterclockwise numbering
Article	Description
VF AC2205	Nut fastener
	M23 connector nut fastener, article:   VF CBSM12DS07.   Required for opening and wiring the connector.

## Technical data:

## Body:

Max. operating voltage: Dielectric strength: Max. operating current: Protection degree: Ambient temperature: Tightening torque: Contact type: Pollution degree: Mating cycles:

## Code structure

Connection type
S $\mathrm{M} 23 \times 1$
Body material
M metal
No. of poles
$\mathbf{1 2} 12$ poles

$$
12 \quad 12 \text { poles }
$$

Stock items
metal, nickel-plated
300 Vac
2500 Vac for 1 minute
8 A
IP67 / IP69K

$-40^{\circ} \mathrm{C} \ldots+125^{\circ} \mathrm{C}$
$1 \ldots 1.5 \mathrm{Nm}$
gold-plated (resistance $<3 \mathrm{~m} \Omega$ )
3
> 1000

## VF CBSM12TS07

Cable diameter
07 from $\varnothing 7$ to $\varnothing$
12 mm
Pin connection type
S solder
$0.34 \ldots 1 \mathrm{~mm}^{2}$

> | Connector type |  |
| :--- | :--- |
| T | clockwise numbering (standard) |
| D | counterclockwise numbering |

VF CBSM12TS07

		The design of this cable gland improves the retention forces of wide range of cable diameters.   Only fit for circular cables.   Technical data:						accepts a
	Article	Description		A	$\square_{M}$	N	0	P
	VF PAM25C7N	$\mathrm{M} 25 \times 1.5$ cable gland for one cable from $\varnothing 10 \ldots 17 \mathrm{~mm}$			30	10	28	M25x1.5
	VF PAM20C6N	$\mathrm{M} 20 \times 1.5$ cable gland for one cable from $\varnothing 6 \ldots 12 \mathrm{~mm}$			24	9	24	M20x1.5
	VF PAM20C5N	$\mathrm{M} 20 \times 1.5$ cable gland for one cable from $\varnothing 5 \ldots 10 \mathrm{~mm}$			24	9	24	M20×1.5
	VF PAM20C3N	$\mathrm{M} 20 \times 1.5$ cable gland for one cable from $\varnothing 3 \ldots 7 \mathrm{~mm}$			24	9	24	M $20 \times 1.5$
	VF PAM16C5N	M16x1.5 cable gland for one cable from $\varnothing 5 \ldots 10 \mathrm{~mm}$			22	7.5	23	M16x1.5
	VF PAM16C4N	M16x1.5 cable gland for one cable from $\varnothing 4 \ldots 8 \mathrm{~mm}$			22	7.5	23	M16x1.5
	VF PAM16C3N	M16x1.5 cable gland for one cable from Ø $3 \ldots 7 \mathrm{~mm}$			22	7.5	23	M16x1.5
	VF PAP13C6N	PG 13.5 cable gland for one cable from $\varnothing 6 \ldots 12 \mathrm{~mm}$			24	9	24	PG 13.5
	VF PAP13C5N	PG 13.5 cable gland for one cable from $\varnothing 5 \ldots 10 \mathrm{~mm}$			24	9	24	PG 13.5
	VF PAP13C3N	PG 13.5 cable gland for one cable from $\varnothing 3 \ldots 7 \mathrm{~mm}$			24	9	24	PG 13.5
	VF PAP11C5N	PG 11 cable gland for one cable from $\varnothing 5 \ldots 10 \mathrm{~mm}$			22	7.5	23	PG 11
	VF PAP11C4N	PG 11 cable gland for one cable from $\varnothing 4 \ldots 8 \mathrm{~mm}$			22	7.5	23	PG 11
	VF PAP11C3N	PG 11 cable gland for one cable from $\varnothing 3 \ldots 7 \mathrm{~mm}$			22	7.5	23	PG 11
	VF PAM20CBN	$\mathrm{M} 20 \times 1.5$ multi hole cable gland for 2 cables from $\varnothing 3 \ldots 5 \mathrm{~mm}$			24	9	23	M20x1.5
	VF PAM20CDN	$\mathrm{M} 20 \times 1.5$ multi hole cable gland for 3 cables from $\varnothing 1 \ldots 4 \mathrm{~mm}$			24	9	23	M $20 \times 1.5$
	VF PAM20CEN	$\mathrm{M} 20 \times 1.5$ multi hole cable gland for 3 cables from $\varnothing 3 \ldots 5 \mathrm{~mm}$			24	9	23	M20x1.5
	VF PAM20CFN	$\mathrm{M} 20 \times 1.5$ multi hole cable gland for 4 cables from $\varnothing 1 \ldots 4 \mathrm{~mm}$		8	24	9	23	M $20 \times 1.5$

Thread adapters
100 pcs. packs


Thread adapters make it possible to fulfil requests for switches with a different thread to those generally found in stock. This means it is possible to offer customers a single product type with various threaded connections, while only having to stock the product itself and many kinds of adapters.

## Technical data:

Body material:
Tightening torque:
reinforced technopolymer
with glass fibre
$3 \ldots 4 \mathrm{Nm}$


Article	Description	X	Y	Z	K	DE
VF ADPG13-PG11	Adapter from PG 13.5 to PG 11	PG 13.5	PG 11	9	12	22
VF ADPG13-M20	Adapter from PG 13.5 to M $20 \times 1.5$	PG 13.5	M20x1.5	9	14	24
VF ADPG13-1/2NPT	Adapter from PG 13.5 to 1/2 NPT	PG 13.5	1/2 NPT	9	14	24
VF ADPG11-1/2NPT	Adapter from PG 11 to 1/2 NPT	PG 11	1/2 NPT	7	14	24
VF ADPG11-PG13	Adapter from PG 11 to PG 13.5	PG 11	PG 13.5	7	14	24
VF ADM20-1/2NPT	Adapter from M20 x 1.5 to 1/2 NPT	M20 $\times 1.5$	1/2 NPT	9	14	24

Protection caps
100 pcs. packs

	Technical data:   Body material: Protection degree: Tightening torque:	```technopolymer IP67 acc. to EN 60529 from 1.2 to 1.6 Nm (PG13.5 / M20) 1 ... 1.4 Nm (PG11 / M16)```	$\sqrt[4]{a}$	$\infty \overbrace{2}$
Article	Description		A	B
VF PTM20	Protection cap M20×1,5		25	M20x1.5
VF PTM16	Protection cap M16x1,5		23	M16x1.5
VF PTG13,5	Protection cap PG13,5		25	PG 13.5
VF PTG11	Protection cap PG11		23	PG 11


|  | Technical data: <br> Body material: <br> Tightening torque: | technopolymer <br> $1.2 \ldots 2 \mathrm{Nm}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |

## Chock plugs

100 pcs. packs

## Technical data:

Body material: Protection degree: Tightening torque:
technopolymer
IP54 acc. to EN 60529
0.8 ... 1 Nm

Notes: Use a socket wrench for tightening.


$A$	$B$
7.5	$M 20 \times 1.5$
3.5	$M 20 \times 1.5$

Safety screws Torx 10 pcs. packs


Pan head screws with Torx fitting and pin, stainless steel.
Where required for applications conforming to EN ISO 14119 use a thread locker.

Safety screws One-Way
10 pcs. packs


Pan head screws with OneWay fitting in stainless steel.
This screw type cannot be removed or tampered with using common tools. Ideal for fixing safety device actuators in accordance with EN ISO 14119.

Article	Description
VF VAM4X10BW-X	M4×10 screw, with OneWay fitting, AISI 304
VF VAM4X15BW-X	M4×15 screw, with OneWay fitting, AISI 304
VF VAM4X20BW-X	M4×20 screw, with OneWay fitting, AISI 304
VF VAM4X25BW-X	M4×25 screw, with OneWay fitting, AISI 304
VF VAM5X10BW-X	M5×10 screw, with OneWay fitting, AISI 304
VF VAM5X15BW-X	M5×15 screw, with OneWay fitting, AISI 304
VF VAM5X20BW-X	M5×20 screw, with OneWay fitting, AISI 304
VF VAM5X25BW-X	M5×25 screw, with OneWay fitting, AISI 304

## Description

M4x10 screw, with OneWay fitting, AISI 304
M4x15 screw, with OneWay fitting, AISI 304
M4×20 screw, with OneWay fitting, AISI 304

M5x15 screw, with OneWay fiting, AISI 304
screw, with OneWay fitting, AISI 304
M5x25 screw, with OneWay fitting, AISI 304

## Bits for Torx safety screws



Bits for Torx safety screws with pin with $1 / 4^{\prime \prime}$ hexagonal connection

Article	Description
VF VAIT1T20	Bits for M4 screws with Torx T20 fitting
VF VAIT1T25	Bits for M5 screws with Torx T25 fitting

## Fixing plates



Metal fixing plate, designed to fix rope switches on the ceiling.
The plate is provided with many fixing holes suitable for all series of switches. It is supplied without screws.

Article	Description
VF SFP2	Ceiling fixing plate

## Fixing plates



Fixing plate (complete with fastening screws) provided with long slots for the adjustment of the operating point.
Every plate has a double couple of fixing holes, one for standard switches and the other one for switches with reset device. In this way the actuator will always have the same actuating point.

Article	Description
VF SFP1	Fixing plate (FR series)
VF SFP3	Fixing plate (FX series)

Indicator lights
5 pcs. packs


These indicator lights are used for visualizing a change of the state of an electric contact inside the switch. They can be installed only on series FL, FX, FZ, FW, FG or FS switches by screwing them on one of the conduit entries not used for electric cables, and they can have many different functions: for example, combined with a rope switch (e.g. FL 1878-M2) they can indicate (also in the distance) if the switch has been actuated.
Otherwise, combined with safety switches with separate actuator (e.g. FL 693-M2), they can indicate if the protection is closed correctly or not. Combined with a safety switch with solenoid (FS or FG series), they can indicate if the protection is locked or unlocked. Combined with any switch of FL, FX, FW or FZ series they can be used to calibrate the actuator. The light indicators are decomposable in two parts for bulb replacement without removing the lamp holder from the switch, and their inner part can rotate in such a way that it can be wired and screwed on the switch without any risk of kinking the wires.

## Technical data:

Max. operating voltage Ui: $\quad 250 \mathrm{Vac} / \mathrm{dc}$
Rated impulse withstand voltage $\left(\mathrm{U}_{\mathrm{imp}}\right): 4 \mathrm{kV}$
Bulb max. power: 3 W
Protection degree:
Bulb connection:
Cable cross-section:
Ambient temperature:
Tightening torque:
3 W
P67 acc. to EN 60529
BA9
$\min .0 .5 \mathrm{~mm}^{2}$ max. $1.5 \mathrm{~mm}^{2}$
$-25^{\circ} \mathrm{C} \ldots+40^{\circ} \mathrm{C}$
3... 4 Nm


## Code structure

## Bulb type

I	incandescence
$\mathbf{X}$	without bulb
Bulb voltage	
$\mathbf{0 2 4}$	$24 \mathrm{Vac} / \mathrm{dc} \pm 10 \%$
$\mathbf{1 1 0}$	$110 \mathrm{Vac} / \mathrm{dc} \pm 10 \%$
$\mathbf{2 2 0}$	$220 \mathrm{Vac} / \mathrm{dc} \pm 10 \%$
$\mathbf{0 0 0}$	without bulb

Thread (P)
M M20×1.5 (standard)
P PG 13.5

Cover colour	
G	yellow
R	red
$\mathbf{V}$	green
W	white

$\rightarrow$ The 2D and 3D files are available at www.pizzato.com
Items with code on green background are stock items

## Installation of single switches with safety functions

- Use only switches with the symbol $\Theta$ (see figure on the side).
- Connect the safety circuit to the NC normally closed contacts (11-12, 21-22 or 31-32).
- The NO normally open contacts (13-14, 23-24, 33-34) should be used only for signalling; these contacts are not to be connected with the safety circuit. However, if in the same protection two or more switches are used, it is possible to connect the contact NO to the safety circuit.
In this case at least one of the two switches must have a positive opening and a normally closed contact NC (11-12,
21-22 or 31-32) must be connected to the safety circuit.
- Actuate the switch at least up to the positive opening travel shown in the travel diagrams with symbol $\Theta$.
- Operate the switch at least with the positive opening force, indicated between brackets below each article, aside the minimum force value.
- The fixing of the device must occur in compliance with the standard EN ISO 14119.

Whenever the machine guard is opened and during the whole opening travel, the switch must be pressed directly (fig. 1) or through a rigid connection (fig. 2).
Only in this way the positive opening of the NC normally closed contacts (11-12, 21-22,31-32) is guaranteed.


In safety applications with only one switch for each guard, the switches must never be activated by a release (fig. 3 and 4) or through a non rigid connection (i.e. by a spring).


## Mechanical stop

Acc. to EN ISO 14119 paragraph 5.2 letter h) "the position sensors must not be used as mechanical stop".


The actuator must not exceed the max. travel as indicated in the travel diagrams.


## Actuation modes

Recommended application

## Switches for heavy duty applications

## Maximum and minimum actuation speed (FD-FL-FP-FC series)

## Roller lever - Type 1



## Roller lever - Type 3



## Roller plunger - Type 2

$\varphi$	Vmax   $(\mathbf{m} / \mathbf{s})$	Vmin   $(\mathbf{m m} / \mathbf{s})$   $\mathbf{L}$	Vmin   $(\mathbf{m m} / \mathbf{s})$
$\mathbf{R}$			



## Plunger - Type 4

Vmax		
$(\mathbf{m} / \mathbf{s})$	Vmin   $(\mathbf{m m} / \mathbf{s})$   $\mathbf{L})$	Vmin   $(\mathbf{m m} / \mathbf{s})$   $R$
0,5	1	0,01



Contact type:
$\mathbf{R}$ = snap action
$\mathbf{L}=$ slow action

Tightening torques FD-FL-FP-FC-FG-FS-NG series


Switches for heavy duty applications FD-FL-FP-FC series


Legend

## Switches for normal duty applications

## Maximum and minimum actuation speed (FR-FM-FX-FZ-FK series)

## Roller lever - Type 1

	Vmax   $(\mathrm{m} / \mathrm{s})$	Vmin   $(\mathrm{mm} / \mathrm{s})$   $\varphi$	Vmin   $(\mathrm{mm} / \mathrm{s})$   L
$15^{\circ}$	2,5	9	
$30^{\circ}$	1,5	8	0,07
$45^{\circ}$	1	7	0,07
$60^{\circ}$	0,75	7	

## Roller plunger - Type 2

$\varphi$	Vmax   $(\mathbf{m} / \mathbf{s})$	Vmin   $(\mathbf{m m} / \mathbf{s})$   $\mathbf{L}$	Vmin   $(\mathbf{m m} / \mathbf{s})$   $\mathbf{R}$
$15^{\circ}$	1	4	0,04
$30^{\circ}$	0,5	2	0,02
$45^{\circ}$	0,3	1	0,01



Plunger - Type 4

Vmax   $(\mathbf{m} / \mathbf{s})$	Vmin   $(\mathbf{m m} / \mathbf{s})$	Vmin   $(\mathbf{m m} / \mathbf{s})$
$\mathbf{L}$	$\boxed{R}$	
0,5	1	0,01



Roller plunger - Type 5

$\varphi$	Vmax   $(\mathbf{m} / \mathbf{s})$	Vmin   $(\mathbf{m m / s})$   $\mathbf{L})$	Vmin   $(\mathbf{m m / s})$
$15^{\circ}$	0,3	4	0,04
$30^{\circ}$	0,2	2	0,02



## Tightening torques (FM and FZ series)

Cover screws 1	0.8 ... 1.2 Nm
Head screws 2	0.8 ... 1.2 Nm
Lever screw 3	$0.8 \ldots 1.2 \mathrm{Nm}$
Protection caps 4 (conduit entry M20/PG13.5) (conduit entry M16/PG11)	$\begin{gathered} 1.2 \ldots 1.6 \mathrm{Nm} \\ 1 \ldots 1.4 \mathrm{Nm} \end{gathered}$
Contact block screws 5	$0.6 \ldots 0.8 \mathrm{Nm}$
M4 body fixing screws 6	$2 \ldots 3 \mathrm{Nm}$



Switches for normal duty applications (FR-FM-FX-FZ-FK series)


Legend
Closed contact $\mid \rightleftharpoons$ Open contact $\mid \Theta$ Positive opening travel acc. to EN 60947-5-1 $\mid \downarrow$ Pushing the switch / $\downarrow$ Releasing the switch

## Switches with reset W3 for normal duty applications, FR-FM-FX-FZ-FK series

Travel diagrams


Legend
Closed contact $\mid \longleftarrow$ Open contact $\mid \Theta$ Positive opening travel acc. to EN 60947-5-1 $\mid$ Pushing the switch / Releasing the switch $\mid$ R travel for reset attachment

## Prewired switches FA series

## Travel diagrams



Legend
Closed contact $\mid \rightleftharpoons$ Open contact $\mid \Theta$ Positive opening travel acc. to EN 60947-5-1 $\mid>$ Pushing the switch $/ \triangleleft$ Releasing the switch

Switches for safety applications, FR-FM-FX-FZ-FK-FW series

## Travel diagrams

Contact blocks	Group 8	Group 9	Group 10	Group 11
$\begin{array}{ccc} 5 & 11 \\ 1 \mathrm{NO}+1 \mathrm{NC} & \mathrm{y}^{2} & -1_{24}^{23} \end{array}$	$\underbrace{0.6 \underbrace{\oplus}_{9}}_{4.6}$			$\underbrace{90^{\circ} \oplus 25_{10}^{\circ}}_{3^{\circ}} 0$
$\begin{array}{ccc} 6 & 1_{14}^{\prime} & 21 \\ 1 \mathrm{NO}+1 \mathrm{NC} & -1 \\ 14 & 22 \end{array}$				
$\begin{array}{ccc} 7 & 1_{1}^{11} & 21 \\ 1 \mathrm{NO}+1 \mathrm{NC} & 4_{12} & -y_{22} \end{array}$		$\frac{0^{\circ} 15^{\circ} \Theta 25^{\circ}}{7^{\circ}}$	1	1
$\begin{array}{ccc} 9 & 11 & 21 \\ 2 \mathrm{NC} & 4_{12} & -4 \\ 12 \end{array}$				
$\begin{array}{ccc} 11 & 11 & 21 \\ 2 \mathrm{NC} & 4 & y_{12} \\ 12 \end{array}$	$\underbrace{0.8 \Theta_{8.8}^{0}}_{3.9}$	1	1	1
$\begin{array}{lll} 13 & 11 & 21 \\ 2 N C & 7 & -4 \\ 12 & 22 \end{array}$		1	1	1
$\begin{array}{lll} 14 & 11 & 21 \\ 2 N C & 4 & -4 \\ 12 & 22 \end{array}$			1	1
$\begin{array}{ccc} 18 & 1_{1}^{1} & 23 \\ 1 \mathrm{NO}+1 \mathrm{NC} & f_{12} & -l_{24} \end{array}$	$\stackrel{\infty}{0} \stackrel{5}{5}$			$\stackrel{90^{\circ} 13 \odot 5^{\circ} 0^{\circ} 5^{\circ} \oplus 13^{\circ} 90^{\circ}}{8^{\circ}}$
$\begin{array}{cccc} 20 & 11 & 21 & 33 \\ 1 \mathrm{NO}+2 \mathrm{NC} & 4_{12} & -7 & -1 \\ \hline 12 & -1 \end{array}$				
$\begin{array}{llll} 21 & 11 & 21 & 31 \\ 3 N C & 4 & -7 & -7 \\ 12 & 22 & 32 \end{array}$	$0 \quad \underbrace{5.3 \oplus 7.8} \infty$			
$22$				
$\begin{array}{ccc} 33 & \dot{1}_{14}^{13} & 21 \\ 1 \mathrm{NO}+1 \mathrm{NC} & \overbrace{14} & 22 \end{array}$				$\stackrel{90^{\circ} 13^{\circ} \Theta 5^{\circ} 0^{\circ} 5^{\circ} \Theta 13^{\circ} 90^{\circ}}{8^{\circ}}$
$\begin{array}{lll} 34 & 1_{1}^{1} & 21 \\ 2 \mathrm{NC} & y_{12} & -4 \\ \hline 12 \end{array}$				
$\begin{array}{ccc} 37 & 亡_{14}^{13} & 21 \\ 1 \mathrm{NO}+1 \mathrm{NC} & -4 \\ \hline 1 \end{array}$	${\underset{4.5}{0} 9.2 \oplus 9.7 \quad \infty}_{\infty}^{\infty}$	1	1	1
$\begin{gathered} 66 \\ 1 \mathrm{NC} \end{gathered} \quad \int_{12}^{11}$	$0 \underbrace{4.6} \underbrace{\oplus .1} \underbrace{\infty}$		$\stackrel{6^{\circ} \oplus 144^{\circ} \quad 180^{\circ}}{ }$	$\stackrel{90^{\circ} \quad 6^{\circ} 0^{\circ} 6^{\circ} \quad 90^{\circ}}{14 \oplus} \stackrel{\Theta 14^{\circ}}{ }$

Legend
Closed contact $\mid \longleftarrow$ Open contact $\mid \Theta$ Positive opening travel acc. to EN 60947-5-1 $\mid>$ Pushing the switch $/ \triangleleft$ Releasing the switch

## Modular prewired switches (NA-NB-NF series)

## Maximum and minimum actuation speed

## Roller lever - Type 1

$\varphi$	Vmax   $(\mathbf{m} / \mathbf{s})$	Vmin   $(\mathbf{m m} / \mathbf{s})$	Vmin   $(\mathbf{m m} / \mathbf{s})$
$15^{\circ}$	2,5	9	
$30^{\circ}$	1,5	8	
$45^{\circ}$	1	7	0,07
$60^{\circ}$	0,75	7	



## Roller plunger - Type 2

$\varphi$	Vmax   $(\mathbf{m} / \mathbf{s})$	Vmin   $(\mathbf{m m} / \mathbf{s})$   $\boxed{\mathbf{L}}$	Vmin   $(\mathbf{m m} / \mathbf{s})$   $\mathbf{R}$
$15^{\circ}$	1	4	0,04
$30^{\circ}$	0,5	2	0,02
$45^{\circ}$	0,3	1	0,01



Roller lever - Type 3

$\varphi$	Vmax   $(\mathbf{m} / \mathbf{s})$	Vmin   $(\mathbf{m m} / \mathbf{s})$	Vmin   $(\mathbf{m m} / \mathbf{s})$   $\mathbf{L}$
$\mathbf{R}$			
$15^{\circ}$	1	5	0,05
$30^{\circ}$	0,5	2,5	0,025
$45^{\circ}$	0,3	1,5	0,015



Plunger - Type 4

Vmax   $(\mathbf{m} / \mathbf{s})$	Vmin   $(\mathbf{m m} / \mathbf{s})$   $\mathrm{L})$	Vmin   $(\mathbf{m m} / \mathbf{s})$
0,5	1	0,01



## Roller plunger - Type 5

	Vmax   $(\mathbf{m} / \mathbf{s})$	Vmin   $(\mathbf{m m} / \mathbf{s})$   $\mathbf{L})$	Vmin   $(\mathbf{m m} / \mathbf{s})$   B
$15^{\circ}$	0,3	4	0,04



Contact type:

$\mathbf{R}$	= snap action
$\mathbf{L}$	$=$ slow

= snap action
=slow action


For NA and NB series:
Head screws
$0.5 \ldots 0.7 \mathrm{Nm}$
Lever screws
Connector screw 3
M4 body fixing screws

## For NF series:

Head screws 1	$0.3 \ldots 0.4 \mathrm{Nm}$
Lever screws 2	$0.8 \ldots 1.2 \mathrm{Nm}$
Connector screw 3	$0.2 \ldots 0.3 \mathrm{Nm}$
M4 body fixing screws 4	$2 \ldots 3 \mathrm{Nm}$

Modular prewired switches (NA-NB-NF series)
Travel diagrams


Legend
Closed contact $\mid \longleftarrow$ Open contact $\mid \Theta$ Positive opening travel acc. to EN 60947-5-1 $\mid>$ Pushing the switch / Releasing the switch

## Microswitches MK series

## Maximum and minimum actuation speed

## Plunger - Type 1



Lever with direct action (D) - Type 3


Roller lever with direct action (D) - Type 6


Roller plunger - Type 2


Lever with inverted action (R) - Type 4
Lever with back direct action (F) - Type 5

Vmax   $(\mathbf{m} / \mathbf{s})$	Vmin   $(\mathbf{m m} / \mathbf{s})$
$0,015 \times \mathrm{L}$	$0,0083 \times \mathrm{L}$



Vmax   $(\mathbf{m} / \mathbf{s})$	Vmin   $(\mathbf{m m} / \mathbf{s})$
$0,01 \times \mathrm{L}$	$0,0047 \times \mathrm{L}$



Roller lever with back direct action (F) - Type 8


Tightening torques


Tighten the nuts 1 with a torque of $\mathbf{2} \ldots \mathbf{3} \mathrm{Nm}$. Tighten the head screws 2 with a torque of $0.3 \ldots 0.4 \mathrm{Nm}$.
Tighten the M4 screws 3 with a torque of 0.8 ... 1.2 Nm , insert washer.

Attention: A tightening torque higher than 1.2 Nm can cause the breaking of the microswitch.


Tighten the terminal screws ${ }^{4}$ with a torque of $\mathbf{0 . 6} \ldots \mathbf{0 . 8} \mathrm{Nm}$.

## General prescriptions

The device is designed to be installed on industrial machineries.
The installation must be performed only by qualified staff aware of the regulations in force in the country of installation.
The device must be used exactly as supplied, properly fixed to the machine and wired.
It is not allowed to disassemble the product and use only parts of the same, the device is designed to be used in its assembly as supplied. It is prohibited to modify the device, even slightly e.g.: replace parts of it, drill it, lubricate it, clean it with gasoline or gas oil or any aggressive chemical agents.
The protection degree of the device refers to the electrical contacts only. Carefully evaluate all the polluting agents present in the application before installing the device, since the IP protection degree refers exclusively to agents such as dust and water according to EN 60529. Thus the device may not be suitable for installation in environments with dust in high quantity, condensation, humidity, steam, corrosive and chemical agents, flammable or explosive gas, flammable or explosive dust or other polluting agents.
Some devices are provided with a perforated housing for inserting the wires. In order to guarantee an adequate protection degree of the device, the wiring through the hole must be done with an appropriate sealing that prevents polluting agents from entering. For a correct wiring then the cable glands, fittings, connectors and other means must have the IP protection degree according to EN 60529 equal to or higher than the one of the device.
Store the products in their original packaging, in a dry place with temperature between $-40^{\circ} \mathrm{C}$ and $+70^{\circ} \mathrm{C}$
Failure to comply with these requirements or incorrect use during operation can lead to the damage of the device and the loss of the function performed by the device itself. This entails the cessation of the warranty on the item and relieves the manufacturer of any liability.

## Device utilization

- Before use, check if the national rules provide for further requirements in addition to those given here.
- Before installation, make sure the device is not damaged in any part.
- All devices are designed to be operated by moving parts of industrial machines.
- Do not use the device as mechanical stop of the actuator.
- Do not apply excessive force to the device once it has reached the end of its actuating travel.
- Do not exceed the maximum actuation travel.
- Avoid contact with corrosive fluids.
- Do not stress the device with bending and torsion.
- Do not disassemble or try to repair the device, in case of defect or fault replace the whole device.
- In case the device is deformed or damaged replace it completely. There is no guarantee of working for a deformed or damage device.
- Always attach the following instructions in the manual of the machine where the device is installed
- The preservation of the following instructions for use has to allow their consultation for the whole utilization period of the device.


## Wiring and installation

- The installation has to be made by qualified staff.
- Limit the use of these devices to control functions.

Observe minimum distances between devices (if provided).

- Comply with the tightening torques indicated in this catalogue.
- Keep the electrical load below the value specified by the respective utilization category.
- Turn off the power before access to the contacts, also during the wiring.
- Do not paint or varnish the devices.
- It is possible to install the product only on flat and clean surfaces.
- Do not bend or deform the device during installation.
- Do not use the device as a support for other parts of the machine (e.g. wireways, conduits, etc.)
-The device must be fixed to the machine through the holes provided on the housing. The device must be fixed with screws of adequate length and resistance to the expected stress. At least two screws must be used to fix the housing to the machine.
- After and during the installation do not pull the electrical cables connected to the device. If high traction is applied to the cables (not supported by an appropriate cable gland) the device contact block may be damaged.
- During wiring comply with the following requirements:
- Comply with the minimum and maximum sections of electrical conductors admitted by terminals (if present).
- Tighten the electrical terminals with the torque indicated in this catalog (if present).
- Do not introduce polluting agents into the device as: talc, lubricants for cable sliding, powder separating agents for multipolar cables, small strands of copper and other pollutants that could affect the proper functioning of the device.
- Before closing the device cover (if present) verify the correct positioning of the
gaskets.
- Verify that the electrical cables, terminals, cable numbering systems and any other part do not obstruct the cover from closing correctly or if pressed between them do not damage or compress the internal contact block.
- For the device with integrated cable the free end of the cable must be properly connected inside a protected housing. The electrical cable must be properly protected from cuts, impacts, abrasion, etc.
- After the installation and before commissioning of the machine, verify:
- the correct operation of the device and all its parts;
- the correct wiring and tightening of all screws;
- the actuating travel of the actuator is shorter than the maximum travel allowed by the device.
- After installation, periodically check for correct device operation.


## Do not use in the following environments:

- Environment where dust and dirt can cover the device and by sedimenting stop its correct working.
- Environment where sudden changes of temperature cause condensation.
- Environment where ice formation on the device is possible.
- Environment where the application causes knocks or vibrations which can damage the device.
- Environment with presence of explosive and inflammable gas or dust.


## Utilization limits

- Use the devices following the instructions, complying with their working limits and the standards in force.
- The devices have specific application limits (min. and max. ambient temperature, mechanical endurance, protection degree, utilization categories, etc.). These limits are satisfied by the different devices only if singularly taken and not in combination among them. For further information contact our technical department.
- The utilization implies compliance and acknowledgement of the following standards: EN 60204-1, EN 60947-5-1, ISO 12100, EN ISO 14119.
- Contact our Technical dept. for information and assistance (phone $+39.0424 .470 .930 / \mathrm{fax}+39.0424 .470 .955$ / e-mail tech@pizzato.com) in the following cases:
- Cases not mentioned on the following instructions.
- In nuclear power stations, trains, airplanes, cars, buses, incinerators, medical devices or any application where the safety of two or more persons depend on the correct operation of the device.


## Additional prescription for safety applications

Provided that all previous requirements for the devices installed for safety application are fulfilled, further additional prescriptions have to be observed:

- The utilization in any case implies compliance and acknowledgement of the following standards: IEC 60204-1, IEC 60947-5-1,ISO 12100, EN ISO 14119, EN 62061, EN ISO 13849-1, EN ISO 13850.
- Always connect the protection fuse (or equivalent device) in series with the NC contacts of the safety circuit.
- Periodically verify the correct working of the safety devices, the periodicity of this verification is settled by the machine manufacturer based on the machine danger degree and it doesn't have to be less than one a year.
- After the installation and before commissioning of the machine, verify:
- the correct operation of the device and all its parts;
- the correct wiring and tightening of all screws;
- the actuating travel of the actuator is shorter than the maximum travel allowed by the device.
- When the device is installed with safety functions, the duration of its use is limited. After 20 years from the date of manufacture, the device must be replaced completely, although still functioning. The production date can be derived from the production lot on the item. Example: A10 FD7-411. The first letter refers to the month of manufacture ( $\mathrm{A}=$ January, $\mathrm{B}=$ February, etc.). The second and third letters refer to the year $(10=2010,11=2011$, etc. $)$


## Features

The contact blocks developed by the company Pizzato Elettrica contain the experience gained in 30 years of technological development and in millions of pieces sold. The contact blocks range available shown in this chapter is one of the widest in the world in the sector of position switches.
This chapter introduces to some features of Pizzato Elettrica contact blocks, in order to give the final user a better understanding of the technologies behind that element simply named "contact".

We underline that contact blocks are not available for sale (to the public) separately from switches, both because some of them are mechanically connected to the switch and because some technical features may change in accordance with the switch and its function. The following data intend to be a selection of all contact blocks, but cannot be used to determine complete characteristics of the switch equipped with that contact block. For example, when a contact block with positive opening is used in a switch with a not rigid actuator, the result is a switch that on the whole is not one with positive opening.

The complete list of contact blocks currently in production is visible on page 315.
On page 253, the features of the electronic contact block E1, which can be used on position switches for a series of surveys, otherwise complex even with electronic sensors, are explained in detail. On the market doesn't exist an electronic sensor that at the same time has the characteristics of operation precision and repeatability, ability of the switching point adjustment, working temperature and price of this unit.


	Description	Page
1	Captive screws	310
2	Finger protection terminals	310
3	Clamping screw plates for different diameter cables	310
4	Self-lifting clamping screw plates	310
5	Contact material: Silver alloy or gold-plated silver alloy	310
6	Contact technology and reliability: Single bridge, double bridge	311
7	Operating voltages and currents for reliable switching	312

## Captive screws

Switches with this characteristic have clamping screws that remain in seat even if completely unscrewed. This feature reduces wiring time, since the operator does not have to be careful not to unscrew the screws completely and does not risk to lose them by mistake, which is very useful in case of wirings in uncomfortable position.

## Finger protection

All terminals in the contact blocks have a protection degree IP20, in accordance with the standard EN 60529, therefore they are protected against access to dangerous parts with diameter over 12 mm .

[^8]
## 5 Contact material: gold-plated silver alloy

The contact blocks can be supplied with silver electric contacts with a special gold-plated surface, with total gold thickness of one micron. This type of treatment can be useful in environments which are aggressive against silver (very humid or sulphurous atmospheres) and in case of very small electric charges, usually with low voltages and supply currents. The gold thickness used has been studied for resistance to millions of mechanical cycles.


## Self-lifting clamping screw plates

Switches with this feature have clamping screw plates that go up or down turning the clamping screw, permitting an easy and quick wiring.

## 6 Contact technology and reliability

Sometimes, hardly ever, an electric contact may not work. A commutation failure is a typical consequence of an occasional presence of a high resistance on the contacts due to dust, a slight layer of oxidation, or impurity of any kind that remains inside the switch during its wiring. The repeatability of this type of phenomena depends not only on the switch, but also on the environmental working conditions and the type of load the switch drives. These effects are more evident with low electrical loads, when the electric voltage does not succeed in perforating thin layers of oxide or small dust grains.
This type of malfunction may be accepted in the hand-operated devices, because it is enough to repeat the operation in order to make everything work again. This is not the case with position switches, where a failure in a switch could cause considerable damage to the machinery.
In the following table we refer to two typical contact structures (type A and B) normally used in the industry and the ones which have been used by Pizzato Elettrica for several years in most of the switches: movable contacts with double interruption and twin bridge (type C).
As you can see from the table below, this last structure (type C) features the same contact resistance $(R)$ of the simple mobile contact (type A), but with a much lower probability of failure (fe).
In fact, defined $x$ the probability of a single interruption failure, it results that in the contact type A the commutation failure probability $f e=x$, in the type $B f e \cong 2 \xi$, whereas in the type C it is fe ${ }^{4 \times 2}$
This means that if in a certain situation the probability of a single interruption failure
x is equal, for instance, to $1 \times 10-4$ ( 1 failed interruption every 10.000 ) we will have:


- for type A one failed commutation every 10,000
- for type B one failed commutation every 5,000.
- for type C one failed commutation every $25,000,000$.



## Minimum operating voltages and currents for reliable switching

The electric contact reliability depends on a lot of elements that change their effect in accordance with the load type. For high power loads it is essential that the contact should be able to eliminate the heat created during switching. For low power loads, instead, it is important that oxides or other impurities do not obstruct the passing of the electric signal. The choice of the electric contacts material is a compromise between different and sometimes opposing requirements. For position switches contacts a silver alloy is usually used that has proved suited to switching of loads in the range of approximately 1 kW to 0.1 W . Moving below this power range, effects may occur due to the oxide which is created naturally when silver makes contact with the air; just as possible contaminations or impurities in the contact switching chamber, for example the talc powder in the cable sheaths that an installer could accidentally insert in the switch may have a similar effect.

It is not possible to define a fix threshold beyond which the "missing switching phenomenon" does not appear, because there are a lot of mechanical end electric parameters that influence this value. For example, a good twin bridge electric contact in laboratory is able to switch without signal loss loads in the $\mu \mathrm{W}$ range for dozens of millions of handling operations. However, this does not mean that the same contact is able to provide the same services when the switch operates in an area with sudden changes of temperature (condensate formation) or with few switchings (oxides formation).

To avoid part of this type of problems, for very low loads are used gold plated contacts, profiting from the non-oxidability of this material. The thickness of the gold-plating should be adequate to be mechanically resistant to switching and to be electrically resistant to possible sparks that may vaporize it. It is for this reason that Pizzato Elettrica uses micron thickness gold plating suitable for millions of working cycles. Gold platings with lower thickness have simply an aesthetic function, suitable only for protection of the product against oxidation when kept in stock for long time.

The minimum current and voltage values suggested by Pizzato Elettrica are readable on the diagram below, divided in two areas defined by a steady power limit. These values identify voltage and current combinations with high commutation reliability in most industrial fields. The lower voltage and current limits shown in the diagram are typical minimum values in industrial application that may also be reduced in not generical conditions. It is recommended, however, to always evaluate that the power signal to commutate should be at least one magnitude order higher than the noise produced in the electric circuit, in particular when circuit cables are long and pass through areas with high electromagnetic fields, especially with signal powers lower than 10 mW .

$\mathbf{1 0 0} \mathbf{~ m W}$ Suggested limit for general applications with snap action contact blocks with silver alloy contacts.
$\mathbf{2 0 0} \mathbf{~ m W}$ Suggested limit for general applications with snap action contact blocks with silver alloy contacts.

8 Classification of the contact block acc. to the EN 60947-5-1


## Electrically separated contacts

Symbol " + " between contact designs (e.g. $\mathrm{X}+\mathrm{X}, \mathrm{Za}+\mathrm{Za}, \mathrm{X}+\mathrm{X}+\mathrm{Y}$, etc.) indicates the combinations of simple contact blocks electrically separated between each other.
The electrically separated contacts allow the application of different voltages on the contacts and the connection of loads on different polarities (figure 1).

## Prescriptions and restrictions for Za contacts

Electrical loads must be connected to the same phase or polarity. The contacts are not electrically separated, connection of different voltages between the NC contact and the NO contact is not allowed (fig. 2 and 3).
Also, as prescribed by the standard EN 60947-5-1 paragraph K.7.1.4.6.1, if Za contacts with positive opening for safety applications are used, the following restrictions have to be adopted:
" If the control accessory has shifting contacts components with design C or Za , you have to use only one contact component (closure or cutoff). In case of shifting contact with design Zb , both contacts may be used..."

## Za design contact


figure 2: correct

figure 3: incorrect

## 9 Contact block with dependent action: slow action and snap action

Contact blocks with slow action:: component where the speed of the contact movement (V1) depends on the speed of the switch actuation (V). The contact armature advances at a rate proportional to the actuation speed.
The slow action contact block is suitable for applications having low to medium currents and quick actuation movements. It has no differential travel.


Contact block with snap action: component where the speed of the contact movement (V1) doesn't depend on the speed of the switch actuation (V). After reaching a predetermined point in travel, the contact armature snaps causing the contacts switching. The snap action contact block is suitable for applications having high currents and/or slow actuation movements. This kind of contact block has a differential travel.

## V $\neq$ V1



0 Contact block: diagrams of the force on the contacts
The following diagrams shows the relationship between of the force exerted on the contacts (F) compared to the switch armature travel.




## Contact blocks with slow action



Contact blocks with snap action and constant
pressure 5, 11, 12. The pressure on the contact remains constant while approaching to the snap point.


Contact blocks with snap action 2, 3, 17
The pressure on the contact decreases while approaching to the snap point.

## Contact blocks FD-FP-FL-FC-FR-FM-FX-FZ-FK-FW-FS series

Con	blocks	Contact diagram	Linear travel diagram	Contact design	Operation type	Positive opening	Contact type	Captive screws	Terminals with finger protection	Gold-plated contacts
2	2x(1NO-1NC)			Za+Za	snap action	no	Double interruption	no	no	Not Available
3	1NO-1NC	$\overbrace{14}^{13} \underbrace{21}_{22}$	$4 \underbrace{0}_{0.8} \underbrace{1.3}$	Za	snap action	no	Double interruption	no	no	Not Available
5	$1 \mathrm{NO}+1 \mathrm{NC}$	$\stackrel{14}{13}_{1_{14}^{13}}^{21}-y_{22}^{21}$		Zb	snap action	yes	Double interruption, twin bridge	yes	yes	Available
6	$1 \mathrm{NO}+1 \mathrm{NC}$	$\begin{aligned} & 11 \\ & y_{12}^{1}-f_{24}^{23} \end{aligned}$		Zb	slow action	yes	Double interruption, twin bridge	yes	yes	Available
7	$1 \mathrm{NO}+1 \mathrm{NC}$	$\begin{aligned} & l_{1}^{11} \\ & y_{12}^{23}-t_{24}^{1} \end{aligned}$	${ }_{1.6}^{0.3 .1 ~}$	Zb	slow action	yes	Double interruption, twin bridge	yes	yes	Available
8	1NC	$\begin{aligned} & 11 \\ & y_{12}^{21}-4_{22}^{21} \end{aligned}$		Y	slow action	yes	Double interruption, twin bridge	yes	yes	Available
9	2NC	$\stackrel{11}{11}{\stackrel{11}{1}-\psi_{22}^{21}}_{-1}^{4}$		Y+Y	slow action	yes	Double interruption, twin bridge	yes	yes	Available
10	2NO	$\dot{14}_{14}^{1,3} f_{24}^{23}$	${ }^{0} 1.4$	X+X	slow action	no	Double interruption, twin bridge	yes	yes	Available
11	2NC	$\stackrel{11}{1_{12}} \overbrace{22}^{21}$		Y+Y	snap action	yes	Double interruption, twin bridge	yes	yes	Available
12	2NO	$\left.\dot{14}_{14}^{1,3}\right\|_{24} ^{23}$	$\underbrace{6}$	X+X	snap action	no	Double interruption, twin bridge	yes	yes	Available
13	2NC	$\stackrel{11}{11} \stackrel{21}{4}-\overbrace{12}^{21}$		Y+Y	slow action	yes	Double interruption, twin bridge	yes	yes	Available
14	2NC			Y+Y	slow action	yes	Double interruption, twin bridge	yes	yes	Available
15	2NO	$\vdash_{14}^{1,3}-_{24}^{23}$		X+X	slow action	no	Double interruption, twin bridge	yes	yes	Available
16	2NC	$\begin{aligned} & 11 \\ & l_{12}^{1}-l_{24}^{23} \end{aligned}$	$\underset{\oplus 48^{\circ} 8^{\circ}}{75^{\circ}} \quad 0 \quad{ }_{75^{\circ}}^{28^{\circ} \oplus 48^{\circ}}$	Y+Y	slow action	yes	Double interruption, twin bridge	yes	yes	Available
18	$1 \mathrm{NO}+1 \mathrm{NC}$	$l_{12}^{11}-t_{24}^{23}$		Zb	slow action	yes	Double interruption, twin bridge	yes	yes	Available
20	$1 \mathrm{NO}+2 \mathrm{NC}$			Y+Y+X	slow action	yes	Double interruption, twin bridge	yes	yes	Available
21	3NC	$\begin{array}{llll} 11 & 21 & 31 \\ 4 & -4 & -4 \\ 12 & -22 & -32 \end{array}$		$Y+Y+Y$	slow action	yes	Double interruption, twin bridge	yes	yes	Available
22	2NO+1NC			Y $+X+X$	slow action	yes	Double interruption, twin bridge	yes	yes	Available
28	$1 \mathrm{NO}+2 \mathrm{NC}$			Y+Y+X	slow action	yes	Double interruption, twin bridge	yes	yes	Available
29	3NC	$\begin{array}{ccc} 11 & 21 & 31 \\ 4 & -7 \\ -12 & 22 & -4 \\ \hline 22 \end{array}$		$Y+Y+Y$	slow action	yes	Double interruption, twin bridge	yes	yes	Available
30	3NC			$Y+Y+Y$	slow action	yes	Double interruption, twin bridge	yes	yes	Available
33	$1 \mathrm{NO}+1 \mathrm{NC}$	$\vdash_{14}^{1,3}-\underbrace{21}_{22}$		Zb	slow action	yes	Double interruption, twin bridge	yes	yes	Available
34	2NC		$\underbrace{1.5 \underbrace{\text { ®3 }}}$	Y+Y	slow action	yes	Double interruption, twin bridge	yes	yes	Available
37	$1 \mathrm{NO}+1 \mathrm{NC}$	$\vdash_{14}^{13}-y_{22}^{21}$		Zb	slow action	yes	Double interruption, twin bridge	yes	yes	Available
66	1NC	$4_{12}^{11}$	$\underbrace{1.4} \underbrace{\text { ¢ } 2.9}{ }^{6}$	Y	slow action	yes	Double interruption, twin bridge	yes	yes	Available
67	1NO	$\int_{14}^{1,3}$	$0 \quad 1.4$	X	slow action	no	Double interruption, twin bridge	yes	yes	Available
E1	1NO-1NC	$K$	$\begin{array}{r} 0 \\ \hline \end{array}$	PNP	electronic	no	electronic	no	no	1

## Contact blocks FG series

Contact blocks		Contact diagram	Linear travel diagram	Contact design	Operation type	Positive opening	Contact type	Captive screws	Terminals with finger protection	Gold-plated contacts
60•	Contact block with 4 poles and multiple contact designs.			See page 93	slow action	yes	With double interruption and twin bridge and double support	yes	yes	Available

## Contact blocks NA-NB-NF series

Con	t blocks	Contact diagram	Linear travel diagram	Contact design	Operation type	Positive opening	Contact type	Captive screws	Terminals with finger protection	Gold-plated contacts
B11	1NO+1NC	$y^{\prime}---4$		Zb	snap action	yes	Double interruption	1	1	Available
B02	2NC	7---7		$Y+Y$	snap action	yes	Double interruption	1	1	Available
B12	$1 \mathrm{NO}+2 \mathrm{NC}$	F-7-1		$X+Y+Y$	snap action	yes	Double interruption	/	/	Available
B22	$2 \mathrm{NO}+2 \mathrm{NC}$	$\neq-7-F^{\prime}-1^{\prime}$		$X+X+Y+Y$	snap action	yes	Double interruption	1	/	Available
G11	1NO+1NC	$5^{\prime}--7$		Zb	slow action	yes	Double interruption	1	1	Available
G02	2NC	$7-7$		Y+Y	slow action	yes	Double interruption	/	1	Available
G12	1NO+2NC	(-7-4		$X+Y+Y$	slow action	yes	Double interruption	1	1	Available
G22	$2 \mathrm{NO}+2 \mathrm{NC}$	4-7-- ${ }^{\prime}-{ }^{\prime}$		$X+X+Y+Y$	slow action	yes	Double interruption	1	1	Available
H11	1NO+1NC	$y^{\prime}--7$		Zb	slow action	yes	Double interruption	1	1	Available
H12	$1 \mathrm{NO}+2 \mathrm{NC}$	$7-7-y^{\prime}$		$X+Y+Y$	slow action	yes	Double interruption	1	1	Available
H22	$2 \mathrm{NO}+2 \mathrm{NC}$	$\neq-y^{-7--F^{\prime}-A^{\prime}}$		$X+X+Y+Y$	slow action	yes	Double interruption	1	/	Available
L11	$1 \mathrm{NO}+1 \mathrm{NC}$	$5^{\prime}--7$		Zb	slow action	yes	Double interruption	1	/	Available
L12	1NO+2NC	$z^{\prime}-7-t^{\prime}$		$X+Y+Y$	slow action	yes	Double interruption	1	1	Available
L22	$2 \mathrm{NO}+2 \mathrm{NC}$	4-7-- ${ }^{\prime}$		$X+X+Y+Y$	slow action	yes	Double interruption	1	/	Available
BA1	$1 \mathrm{NO}+1 \mathrm{NC}$   in deviation	14	$\stackrel{0}{0} \begin{array}{lll} 0.5 & \Theta 4 & 5 \\ \hline \end{array}$	C	snap action	yes	Double interruption	1	1	Available

## Contact blocks HP series

| Contact blocks | Contact <br> diagram | Linear travel diagram |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |


Contact design	Operation type	Positive opening	Contact type	Captive screws	Terminals with finger protection	Gold-plated contacts
Zb	snap action	yes	Double interruption	1	1	Available
Y+Y	snap action	yes	Double interruption	1	1	Available
$X+Y+Y$	snap action	yes	Double interruption	1	1	Available
$X+X+Y+Y$	snap action	yes	Double interruption	1	1	Available
Zb	slow action	yes	Double interruption	1	1	Available
Y+Y	slow action	yes	Double interruption	1	1	Available
$X+Y+Y$	slow action	yes	Double interruption	1	1	Available
$X+X+Y+Y$	slow action	yes	Double interruption	1	1	Available
Zb	slow action	yes	Double interruption	1	1	Available
$X+Y+Y$	slow action	yes	Double interruption	1	1	Available
$X+X+Y+Y$	slow action	yes	Double interruption	1	1	Available

## Connection diagram for assembled connectors

For FD－FL－FM－FZ－FC series with metal housing


For FS series with technopolymer housing

Contact block 18 $1 \mathrm{NO}+1 \mathrm{NC}$	Contact block 20 $2 \mathrm{NC}+1 \mathrm{NO}$	$\text { Contact block } 21$ $3 N C$	Contact block 28 $2 \mathrm{NC}+1 \mathrm{NO}$	Contact block 29 3NC	Contact block 30 3NC
M12 connector， 8 poles					
$\begin{array}{\|cc} \hline \text { Contacts } & \text { Pin no. } \\ \text { A1-A2 } & 1-2 \\ \hline \end{array}$	$\begin{array}{cc} \hline \text { Contacts } & \text { Pin no. } \\ \text { A1-A2 } & 1-2 \\ \hline \end{array}$	Contacts Pin no．   A1－A2 $1-2$	Contacts Pin no．   A1－A2 $1-2$	$\begin{array}{\|cc} \hline \text { Contacts } & \text { Pin no. } \\ \text { A1-A2 } & 1-2 \\ \hline \end{array}$	Contacts Pin no．   A1－A2 $1-2$
NC $=\triangle$ 3－4	NC $-\triangle$ 3－4				
NO $=\triangle$－6－6	NC－$\triangle$ 5－6	NC $=\triangle$ 5－6	NCの吹家 5－6	NC $-\triangle$ 5－6	NC•近 5－6
	$\mathrm{NO}-\triangle \quad 7-8$	NC $-\triangle$ 7－8	NO $-\triangle$ 7－8	NC•吹它 7－8	

## Connection diagram for assembled connectors

For FP - FR - FX - FW series with technopolymer housing

$\begin{aligned} & \text { Contact block } 2 \\ & \text { 1NO-1NC+1NO- } \\ & \text { 1NC } \end{aligned}$	Contact block 5 $1 \mathrm{NO}+1 \mathrm{NC}$	$\begin{gathered} \text { Contact block } 6 \\ 1 \mathrm{NO}+1 \mathrm{NC} \end{gathered}$	$\begin{aligned} & \text { Contact block } 7 \\ & 1 \mathrm{NO}+1 \mathrm{NC} \end{aligned}$	$\begin{gathered} \text { Contact block } 9 \\ \text { 2NC } \end{gathered}$	$\begin{aligned} & \text { Contact block } 10 \\ & 2 \mathrm{NO} \end{aligned}$	Contact block 11 2NC	Contact block 12 2NO	Contact block 13 2NC
M12 connector, 8 poles	M12 connector, 4 poles							
Contacts Pin no.   NO $\quad 3-4$	Contacts Pin no.   NC $\quad 1-2$	Contacts Pin no.   NO 1-2	Contacts Pin no   NC 1-2	Contacts Pin no   NO 1-2	Contacts Pin no.   NC (1 ${ }^{\circ}$ ) $1-2$			
NC 5-6	NO 3-4	NO 3-4	NO 3-4	NC $\quad 3-4$	NO 3-4	NC $\quad 3-4$	NO 3-4	NC ( $2^{\circ}$ ) 3 -4
NC 7-8								
NO 1-2								
Contact block 14 2NC	$\begin{gathered} \text { Contact block } 15 \\ 2 \mathrm{NO} \end{gathered}$	Contact block 16 2NC	$\begin{aligned} & \text { Contact block } 18 \\ & 1 \mathrm{NO}+1 \mathrm{NC} \end{aligned}$	$\begin{gathered} \text { Contact block } 20 \\ 2 N C+1 N O \end{gathered}$	Contact block 21 3NC	$\begin{aligned} & \text { Contact block } 22 \\ & 1 \mathrm{NC}+2 \mathrm{NO} \end{aligned}$	Contact block 33 $1 \mathrm{NC}+1 \mathrm{NO}$	$\begin{gathered} \text { Contact block } 34 \\ 2 N C \end{gathered}$
M12 connector, 4 poles	M12 connector, 8 poles	M12 connector, 8 poles	M12 connector, 8 poles	M12 connector, 4 poles	M12 connector, 4 poles			
Contacts Pin no.   NC ( $1^{\circ}$ ) $1-2$	Contacts Pin no.   NO ( $1^{\circ}$ ) $1-2$	Contacts Pin no.   NC , lever at the right $1-2$	Contacts Pin no.   NC 1-2	$\begin{array}{cc}\text { Contacts } & \text { Pin no. } \\ \text { NC } & 3-4\end{array}$	Contacts Pin no.   NC $3-4$	Contacts Pin no   NC $3-4$	Contacts Pin no.   NC 1-2	Contacts Pin no.   NC $\quad 1-2$
NC (20) 3 -4	NO (2) ${ }^{\text {O }}$-4	NC, lever to the left 3-4	NO 3-4	NC 5-6	NC 5-6	NO 5-6	NO 3-4	NC 3-4
				NO 7-8	NC 7-8	NO 7-8		



M12 connector, $8 \quad$ M12 connector, $8 \quad$ M12 connector, 8

poles		poles		poles	
Contacts   NC $\bigodot$	Pin no.   3-4	Contacts   NC ¢ $\bigodot$	Pin no.   3-4	Contacts   NC $\bigodot$	Pin no.   3-4
NCの吅	5-6	NC ¢	5-6	NC๒fer	5-6
NO ¢	7-8	NC ¢f.	7-8	NC ¢fe	7-8



M12 connector, 4 poles

Contacts	Pin no.
+	1
-	3
NC	2
NO	4

## For FG series with metal housing and M23 connector

$\begin{aligned} & \text { Contact block } \\ & 60 \mathrm{~A} \\ & 2 \mathrm{NO}+2 \mathrm{NC} \end{aligned}$	$\begin{gathered} \text { Contact block } \\ 60 \mathrm{~B} \\ \text { 1NO }+3 \mathrm{NC} \end{gathered}$	$\begin{gathered} \text { Contact block } \\ \text { 60C } \\ \text { 4NC } \end{gathered}$	$\begin{aligned} & \text { Contact block } \\ & 60 D \\ & 1 \mathrm{NO}+3 \mathrm{NC} \end{aligned}$	$\begin{aligned} & \text { Contact block } \\ & 60 \mathrm{E} \\ & 1 \mathrm{NO}+3 \mathrm{NC} \end{aligned}$	$\begin{gathered} \text { Contact block } \\ 60 \mathrm{~F} \\ 2 \mathrm{NO}+2 \mathrm{NC} \end{gathered}$	$\begin{gathered} \text { Contact block } \\ \text { 60G } \\ \text { 4NC } \end{gathered}$	Contact block $60 \mathrm{H}$   4NC	$\begin{gathered} \text { Contact block } \\ 601 \\ 1 \mathrm{NO}+3 \mathrm{NC} \end{gathered}$	$\begin{aligned} & \text { Contact block } \\ & 60 \mathrm{~L} \\ & 2 \mathrm{NO}+2 \mathrm{NC} \end{aligned}$
M23 connector 12 poles	M23 connector 12 poles	M23 connector 12 poles	12 poles	M23 connector 12 poles					
Contacts Pin no．   A1－A2   1－2	Contacts Pin no．   A1－A2   1－2	Contacts Pin no． A1-A2   1－2	Contacts Pin no． A1-A2 $1-2$	Contacts Pin no． A1－A2 1－2	Contacts Pin no．   A1－A2   1－2	Contacts Pin no．   A1－A2   1－2	Contacts Pin no． A1－A2 1－2	Contacts Pin no．   A1－A2   1－2	Contacts Pin no． A1－A2 1－2
	NC－$\triangle$ 3－4	NC－$\triangle$ 3－4	NO $=\triangle$ 3－4	NC－$\triangle$ 3－4	NC－$\triangle$ 3－4	NC－$\triangle$ 3－4	NC $=\triangle$ 3－4	NC $-\triangle \quad 3-4$	
NC－$\triangle$－6－6	NC＝$\triangle$ 5－6	NC＝$\triangle$ 5－6	NC $-\triangle$ 5－6	NC－$\triangle$ 5－6	NC－$\triangle$ 5－6	NC－$\triangle$ 5－6	NC＝$\triangle$ 5－6	$N C=\triangle \quad 5-6$	NC－$\triangle$－6－6
NO－$\triangle$ 7－8	NC F－fer $7-8$	NC $-\triangle$ 7－8	NC F阿 7－8	NC Fres $7-8$	NO $-\triangle$ 7－8	NC F－ 7 －8	NC $-\triangle \quad 7-8$	NC－$\triangle$－8	NO $=\triangle \quad 7-8$
	NO近殹 9－10		NC 吹阿 9－10	NO $=\square \quad 9-10$	NO F－0｜c 9－10	NC 局阿 9－10	NC＝$\triangle$ 9－10	NO ¢－0．6 9－10	NO $=\triangle \quad 9-10$
ground 11									


$\begin{gathered} \text { Contact block } \\ 60 \mathrm{M} \\ 3 \mathrm{NO}+1 \mathrm{NC} \end{gathered}$	Contact block 60N $3 \mathrm{NO}+1 \mathrm{NC}$	$\begin{gathered} \text { Contact block } \\ \text { 60P } \\ 4 \mathrm{NC} \end{gathered}$	$\begin{gathered} \text { Contact block } \\ 60 R \\ 2 N O+2 N C \end{gathered}$	$\begin{gathered} \text { Contact block } \\ 60 \mathrm{~S} \\ 2 \mathrm{NO}+2 \mathrm{NC} \end{gathered}$	$\begin{aligned} & \text { Contact block } \\ & 60 T \\ & 1 \mathrm{NO}+3 \mathrm{NC} \end{aligned}$	$\begin{aligned} & \text { Contact block } \\ & \text { 60U } \\ & \text { 4NC } \end{aligned}$	$\begin{aligned} & \text { Contact block } \\ & 60 \mathrm{~V} \\ & 2 \mathrm{NO}+2 \mathrm{NC} \end{aligned}$	$\begin{gathered} \text { Contact block } \\ 60 X \\ 1 N O+3 N C \end{gathered}$	$\begin{gathered} \text { Contact block } \\ 60 \mathrm{Y} \\ 2 \mathrm{NO}+2 \mathrm{NC} \end{gathered}$
M23 connector 12 poles	M23 connector 12 poles	M23 connector 12 poles	M23 connector 2 poles	M23 connector 12 poles	$\begin{aligned} & \text { M23 connector } \\ & 12 \text { poles } \end{aligned}$	M23 connector   12 poles	M23 connector 12 poles	M23 connector 2 poles	M23 connector 12 poles
Contacts Pin no． $\text { A1-A2 } \quad 1-2$	Contacts Pin no． $\text { A1-A2 } \quad 1-2$	Contacts Pin no． $\text { A1-A2 } \quad 1-2$	Contacts Pin no $\text { A1-A2 } \quad 1-2$	Contacts Pin no． $\text { A1-A2 } \quad 1-2$	Contacts Pin no． $\text { A1-A2 } \quad 1-2$	Contacts Pin no． $\text { A1-A2 } \quad 1-2$	Contacts Pin no． $\text { A1-A2 } \quad 1-2$	Contacts Pin no． $\text { A1-A2 } \quad 1-2$	Contacts Pin no． $\text { A1-A2 } \quad 1-2$
NO ¢－FS 3－4	NO $=\triangle$ 3－4	NCEFers 3－4	NC $=\triangle$ 3－4	NC $=\triangle \quad 3-4$	NC $=\triangle \quad 3-4$	NC Fofe 3－4	NC $=\triangle \quad 3-4$	NO $=\triangle$ 3－4	
NC＝$\triangle$ 5－6	NC $=\triangle \quad 5-6$	NC．efe 5－6	NC $=\triangle \quad 5-6$	NC ¢－1s 5－6	NC Fofes 5－6	NC Fofe 5－6	NC $=\triangle \quad 5-6$	NC．efe 5－6	NC ¢－fe 5－6
NO $=\triangle \quad 7-8$	NO．efe 7－8	NC $=\triangle \quad 7-8$	NO $=\square \quad 7-8$	NOFFC 7－8	NC F．⿰阝介 $7-8$	NCㅌ．F近 7－8	NO®FS 7－8	NC．efe 7－8	NO．afe 7－8
NO $=\triangle \quad 9-10$	NO F－Fe 9－10	NC ㅌ．fe 9－10	NO $-\square \quad 9-10$	NO F－fe 9－10	NO F－F｜9－10	NC［．afc 9－10	NO Fefa 9－10	NC［－F｜9－10	$\mathrm{NO}=\square \quad 9-10$
ground 11									


$\begin{gathered} \text { Contact block } \\ 61 \mathrm{~A} \\ 1 \mathrm{NO}+3 \mathrm{NC} \end{gathered}$	$\begin{gathered} \text { Contact block } \\ 61 \mathrm{~B} \\ 2 \mathrm{NO}+2 \mathrm{NC} \end{gathered}$	$\begin{aligned} & \text { Contact block } \\ & 61 \mathrm{C} \\ & 3 \mathrm{NO}+1 \mathrm{NC} \end{aligned}$	$\begin{gathered} \text { Contact block } \\ 61 \mathrm{D} \\ 3 \mathrm{NO}+1 \mathrm{NC} \end{gathered}$	$\begin{gathered} \text { Contact block } \\ 61 \mathrm{E} \\ 3 \mathrm{NO}+1 \mathrm{NC} \end{gathered}$	$\begin{gathered} \text { Contact block } \\ 61 \mathrm{G} \\ 3 N O+1 \mathrm{NC} \end{gathered}$	$\begin{gathered} \text { Contact block } \\ 61 \mathrm{H} \\ 2 \mathrm{NO}+2 \mathrm{NC} \end{gathered}$	$\begin{gathered} \text { Contact block } \\ 61 \mathrm{M} \\ 3 \mathrm{NO}+1 \mathrm{NC} \end{gathered}$	$\begin{gathered} \text { Contact block } \\ 61 \text { R } \\ 1 N O+3 N C \end{gathered}$	$\begin{gathered} \text { Contact block } \\ 61 S \\ 3 N O+1 N C \end{gathered}$
M23 connector 12 poles									
Contacts Pin no． $\text { A1-A2 } \quad 1-2$	Contacts Pin no． $\text { A1-A2 } \quad 1-2$	Contacts Pin no．   A1－A2 1－2	Contacts Pin no．   A1－A2 1－2	Contacts Pin no． $\text { A1-A2 } \quad 1-2$	Contacts Pin no．   A1－A2 1－2	Contacts Pin no． $\text { A1-A2 } \quad 1-2$	Contacts Pin no． $\text { A1-A2 } \quad 1-2$	Contacts Pin no． $\text { A1-A2 } \quad 1-2$	Contacts Pin no． $\text { A1-A2 } \quad 1-2$
	NC［－fec 3－4	NO ¢ofec 3－4		NO $=\triangle$ 3－4	NO ¢－fec 3－4	NC Frose 3－4	NO $=\triangle$ 3－4	NC＝$\triangle$ 3－4	NO $=\triangle \quad 3-4$
NC ¢efer 5－6	NC［－fe 5－6	NC［－Fe 5－6	NC $=\triangle \quad 5-6$	NC F－Fs 5－6	NC．e．fe 5－6	NCrefer 5－6	NC．efac 5－6	NC＝$\triangle$－ 5 －6	NC $=\triangle \quad 5-6$
NC E．fer 7－8	NO．F｜c $7-8$	NO F－FE 7－8	NO ¢－院 7－8	NOFF｜cer $7-8$	NO $\triangle \square \quad 7-8$	NO $=\square \quad 7-8$	NO $=\triangle \quad 7-8$	NC $\triangle$－-8	NO $=\square \quad 7-8$
NOC．ers 9－10		NO ㅌ．fes 9－10	NO ¢f．efe 9－10	NOㅌ．．奂 9－10	NO $=\triangle \quad 9-10$				
ground 11									

## For FG series with metal housing and M12 connector



$\begin{gathered} \text { Contact block } \\ 60 \mathrm{M} \\ 3 \mathrm{NO}+1 \mathrm{NC} \end{gathered}$	$\begin{aligned} & \text { Contact block } \\ & 60 \mathrm{~N} \\ & 3 \mathrm{NO}+1 \mathrm{NC} \end{aligned}$	$\begin{gathered} \text { Contact bl } \\ 60 \mathrm{P} \\ 4 \mathrm{NC} \end{gathered}$	$\begin{gathered} \text { Contact block } \\ 60 \mathrm{R} \\ 2 N O+2 N C \end{gathered}$	$\begin{aligned} & \text { Contact block } \\ & 60 \mathrm{~S} \\ & 2 N O+2 N C \end{aligned}$	$\begin{gathered} \text { Contact block } \\ 60 T \\ 1 N O+3 N C \end{gathered}$	$\begin{aligned} & \text { Contact block } \\ & 60 \mathrm{U} \\ & 4 \mathrm{NC} \end{aligned}$	$\begin{gathered} 60 \mathrm{~V} \\ 2 \mathrm{NO}+2 \mathrm{NC} \end{gathered}$	$\begin{gathered} \text { Contact block } \\ 60 X \\ 1 N O+3 N C \end{gathered}$	$\begin{gathered} \text { Contact block } \\ 60 \mathrm{Y} \\ 2 \mathrm{NO}+2 \mathrm{NC} \end{gathered}$
	$\begin{array}{r} 19 \\ \times \cdot- \end{array}$								
$\text { A1-A2 } \quad 1-2$	$\begin{array}{lr} \text { Contacts } & \text { Pin } \mathrm{nc} \\ \text { A1-A2 } & 1-2 \end{array}$	Contacts Pin no． $\text { A1-A2 } \quad 1-2$	$\begin{array}{lr} \text { Contacts } & \text { Pin } \mathrm{n} \\ \text { A1-A2 } & 1-2 \end{array}$	Contacts Pin no．   A1－A2 1－2	$\begin{array}{lr} \text { Contacts } & \text { Pin } \mathrm{n} \\ \text { A1-A2 } & 1-2 \end{array}$	Contacts Pin no． $\text { A1-A2 } \quad 1-2$	Contacts Pin no．   A1－A2 1－2	Contacts Pin no $\text { A1-A2 } \quad 1-2$	Contacts Pin no． $\text { A1-A2 } \quad 1-2$
NO	NO	3－4	NC $=\triangle \quad 3-4$	NC $=\triangle$－ 3 －4	NC $=\triangle \quad 3-4$	NCrofe 3－4		NO $=\triangle \quad 3-4$	［6．0］
NC $-\triangle \quad 5-6$	NC $=\square \quad 5-6$	NC．afers 5 －6	NC $=\triangle \quad 5-6$	NC E．ofe 5－6	NCㅌ．0限 5－6	NC 厄－	NC＝	NC ¢ ¢ Fer 5－6	NC．erfe 5－6
NO $=\triangle \quad 7-8$	NO．FFS 7－8	NC＝$\triangle$－ 7 －8	NO $=\triangle$ 7－8	『rec 7－8	Fofe 7－8	NC．efe 7－8	NO Fefer 7－8	NC F．ofe $7-8$	
NO $=\triangle \quad 9$－10	NO F．न阝 $9-10$	NC F．न阝S 9－10	NO $=\triangle$ 9－10	NOEFS 9－10	NOE．न近 9－10	NCㅌ．介榢 9－10	NO Fofe 9－10	NC．．．fer 9－10	NO $=\square \quad 9-10$


$\begin{gathered} \text { Contact block } \\ 61 \mathrm{~A} \\ 1 \mathrm{NO}+3 \mathrm{NC} \end{gathered}$	$\begin{gathered} \text { Contact block } \\ 61 \mathrm{~B} \\ 2 \mathrm{NO}+2 \mathrm{NC} \end{gathered}$	$\begin{aligned} & \text { Contact block } \\ & 61 \mathrm{C} \\ & 3 \mathrm{NO}+1 \mathrm{NC} \end{aligned}$	$\begin{aligned} & \text { Contact block } \\ & \text { 61D } \\ & 3 N O+1 N C \end{aligned}$	$\begin{gathered} \text { Contact block } \\ 61 E \\ 3 N O+1 N C \end{gathered}$	$\begin{gathered} \text { Contact block } \\ 61 \mathrm{G} \\ 3 \mathrm{NO}+1 \mathrm{NC} \end{gathered}$	$\begin{gathered} \text { Contact block } \\ 61 \mathrm{H} \\ 2 \mathrm{NO}+2 \mathrm{NC} \end{gathered}$	$\begin{gathered} \text { Contact block } \\ 61 \mathrm{M} \\ 3 \mathrm{NO}+1 \mathrm{NC} \end{gathered}$	$\begin{gathered} \text { Contact block } \\ 61 R \\ 1 \mathrm{NO}+3 \mathrm{NC} \end{gathered}$	$\begin{gathered} \text { Contact block } \\ 61 \mathrm{~S} \\ 3 \mathrm{NO}+1 \mathrm{NC} \end{gathered}$
M12 connector 12 poles	$12 \mathrm{pc}$	12 poles	M12 connector 12 poles	M12 connector 12 poles					
Contacts Pin n A1－A2 1－2	Contacts Pin no A1－A2 1－2	Contacts Pin no． A1－A2 1－2	Contacts Pin no．   A1－A2   1－2	Contacts Pin no． A1-A2 $1-2$	Contacts Pin no．   A1－A2   1－2	Contacts Pin no． A1－A2 1－2	Contacts Pin no． A1－A2 1－2	Contacts Pin no． A1-A2	Contacts Pin no． A1-A2 $1-2$
	NC 吹院 3－4	NO Ffar 3－4	NO 厄䦿 3－4	NO $=\triangle$ 3－	NO ¢－纪 3－4	NC F陁3－1	NO $=\triangle$ 3－4	NC－$\triangle$ 3－4	NO $=\triangle$ 3－4
NC 吹阿 5－6	NC．雨 5－6	NC F－fe 5－6	NC $-\triangle \quad 5-6$	NC．efe 5 －6		NC曲可 5－6	NC•鼡 $5-6$	NC－$\triangle$ 5－6	NC－$\triangle$ 5－6
NC F－0．6 7－8	NO F－ber 7 7－8	NO ¢－7－8	NO ¢f® $7-8$	NO Frers $7-8$	NO $=\triangle$ 7－8	NO $=\triangle$ 7－8	NO $=\triangle \quad 7-8$	NC－$\triangle$ 7－8	NO $=\triangle$ 7－8
NO F－0．6 9－10	NO ¢－6． $9-10$	NO－9－10	NO－9－10	NOE／E 9－10	$\mathrm{NO}=\triangle \quad 9-10$	$\mathrm{NO}=\square \quad 9-10$	$\mathrm{NO}=\triangle \quad 9-10$	NO $=\triangle$－ $9-10$	NO $=\triangle \quad 9-10$

Note：the wires connected to pins 11 and 12 of the M12 connector can be used to activate the LEDs in FG series configurations with freely connectable LEDs．

Assembled connectors: dimensions and wiring diagrams

## Outline dimension with assembled connectors


13.3


M23x1


FG - NG series

Minimum distances required for insertion of the connectors

Switch with M12 connector mounted below


FD - FP - FL - FC - FR - FM - FX - FZ - FW - FS - FG - NG series



SR series


Hinge with M12 connector


HP - HX series


## 1- Foreword

Purpose of this section is to provide the machine manufacturer with a quick introduction on some standards related to machine safety, to clarify some basic principles and to provide some application examples. This brief guide refers only to the aspects related to the Functional Safety of the machine, that is all the measures aimed at protecting the machinery operator from the risks arising by their operation, and at aspects relating to the design and selection of interlock devices for guards.
It does not mention risks due to other hazards as for example electric energy presence, pressure containers, explosive atmospheres etc. which anyhow shall be evaluated by the machine manufacturer.
This document has been prepared by Pizzato Elettrica best knowledge, considering the standards and interpretations and the existent technologies in year 2015. Since some of the directives are being applied for the first time in these months it cyeart be excluded that in the meantime further directives or interpretations by the official bodies will modify the evaluations provided in this document. Therefore the examples here reported must be always evaluated by the final user according to the technology/directive progress report and they do not relieve users of their own responsibilities. Pizzato Elettrica does not take any responsibility on the reported examples and does not exclude the possibility of involuntary data errors nor inaccuracy.

## 2 -Design in safety. The European standards structure.

In order to be freely marketed in the countries of the European Community every device or machinery must comply with Community Directives. They establish the general principles in order for the manufacturer not to place on the market hazardous products for operators. The products and different possible hazards as a whole are very wide, that's why throughout the time many different directives have been issued. As an example we quote the low voltage directive 2006/95/EC, the explosive atmosphere directive 2014/34/UE, the electromagnetic compatibility directive 2004/108/EC, etc. Any hazard due to machinery functioning is governed by Machinery Directive 2006/42/EC.
The conformity to directives is certified by the manufacturer's issue of the Conformity Declaration and by the application of the CE marking on the machine itself.

For the risks assessment of the machine and realization of safety systems to protect the operator from those risks, the European Committees for Standardization CEN and CENELEC have issued a series of standards which translate into technical requirements the contents of directives. The standards published on the Official Journal of the European Union are to be intended as harmonized. The manufacturer who applies those standards to certify his own machineries has a presumption of conformity to the directives.

The machine safety standards are divided into three types: A, B and C.
Type A standards: give basic concepts, principles for design and general aspects that can be applied to machinery.
Type B standards: deal particularly with one or more aspects concerning the safety and they are also divided into:

- B1: standards concerning some safety aspects (e.g. safety distances, temperatures, noise, etc.)
- B2: standards concerning safety devices (e.g. two-hand controls, interlocking devices, etc.)
Type C standards: deal with detailed safety requirements for particular groups of machines (e.g. hydraulic presses, injection machineries,...).

The manufacturer of devices or machineries must first verify if the product is covered by a type C standard. If so, the standard gives the safety requirements, otherwise type B standards for any specific aspect or device of the product shall apply. Failing further requirements, the manufacturer shall follow general guidelines stated in type A standards.

## TYPE A STANDARDS

for example:
EN ISO 12100. Safety of machinery - General design principles - Risk assessment and risk reduction.

## TYPE B1 STANDARDS <br> for example

EN 62061. Functional safety of safety-related electrical, electronic and programmable electronic control systems. EN ISO 13849-1 and -2. Safety-related parts of control systems

## TYPE B2 STANDARDS

for example:
EN 574. Two-hand control devices.
EN ISO 13850. Emergency stop
EN ISO 14119. Interlocking devices for guards
EN 60204-1. Electrical equipment of machines
EN 60947-5-1. Electromechanical control devices.

## TYPE C STANDARDS

for example:
EN 201. Machinery for rubber and plastic material Injection machines
EN 415-1. Safety of wrapping machines
EN 692. Mechanical presses
EN 693. Hydraulic presses
EN 848.1. Safety of wood-working machines - Miller on one single side with rotating tool - Part 1: Single-shaft vertical miller (router)

## 3 - Designing safe machines. Risks analysis.

The first step to build a safe machine is to identify all possible hazards to which the machine operators are exposed. The hazards identification and classification allow to define the risks for the operator, that is the combination of the possibility that the hazard occurs and the type of possible injury for the operator.

The methodology of risk analysis and assessment, of procedures for their reduction, is defined by standard EN ISO 12100. This contains a cyclic analysis model such that, once the initial objectives are agreed, the analysis of risks and possible solutions to reduce these risks are repeatedly evaluated until the objectives are met.

The model introduced by this standards provides for proceeding with the risks reduction/elimination after an analysis through a process as follows: 1) risks elimination at the origin, through the system structure and the use of inherently safe design principles
2) risks reduction by safeguarding and control systems
3) manifestation of residual risks by informing the users

Since each machinery presents hazards and it's not possible to completely eliminate all possible risks, the objective is to reduce the machinery risks to residual acceptable levels.

In case the risk is reduced through a control system, EN ISO 13849-1 comes into play which provides an evaluation model of the quality system. This way, for a specific level risk it's possible to use a safety function of equal or superior level.


Note: This figure has been obtained by the combination of figures 1 and 3 of EN 13849-1. The original tests are in English.

## 4- Design and selection of interlocking devices associated with guards (EN ISO 14119)

New European standard EN ISO 14119 "Interlocking devices associated with guards - Principles for design and selection" came into force on October 2nd, 2013 and superseded EN 1088/ISO 14119:1998 as of May, 2015.


The standard involves machine designers as well as the interlock device manufacturers (and system integrators), providing requirements for the creation of the device and its correct installation.
The standard highlights some little clear aspects and considers additional technologies used for interlocking devices; defines some parameters (actuator type and level of coding) and regulates the specifications for correct installation, so as to increase the protection against guard manipulation.
The standard also considers other aspects related to interlocking device (e.g. guard locking principle, electromagnetic lock, auxiliary release, escape and emergency release, etc.) which are not detailed here.

## Coding level of the actuators

An important change introduced by the standard is the definition ofa coded actuator and the classification of the level of coding:

- coded actuator - actuator especially designed to actuate a specific interlocking device;
- low level coded actuator - actuator for which 1 to 9 variations in code are available
(e.g. the magnetic sensors SR series or the safety switches with separate actuator FS, FG, FR, FD...);
- medium level coded actuator - actuator for which 10 to 1000 variations in code are available;
- high level coded actuator - actuator for which more than 1000 variations in code are available
(e.g. the sensors of the SX series with RFID technology or the interlocking devices NG series with RFID technology and guard locking)


## Types of interlocking devices

Standard EN ISO 14119 defines different types of interlocking devices:

- Interlocking device type 1 - mechanical actuation by uncoded actuator
(e.g. hinge interlocking devices HP series)
- Interlocking device type 2 - mechanical actuation by coded actuator
(e.g. safety switches with separate actuator of the FR, FS, FG, ... series)
- Interlocking device type 3 - non-contact actuation by uncoded actuator
- Interlocking device type 4 - non-contact actuation by coded actuator
(e.g. RFID safety sensors ST and NG series)

Examples of actuation principle		Actuator examples		Type
Mechanical	Direct contact/force	Not encoded	Rotating cam	Type 1
			Linear cam	
			Hinge	
		Encoded	Key actuated	Type 2
			Trapped key	
Without contact	Inductive	Not encoded	Ferromagnetic material	Type 3
	Magnetic		Magnet, solenoid	
	Capacitive		Any suitable object	
	Ultrasounds		Any suitable object	
	Optical		Any suitable object	
	Magnetic	Encoded	Magnetically coded	Type 4
	RIFD		RFID, encoded	
	Optical		Optical, encoded	

[^9]
## Requirements for the design and the installation of interlocking devices according to EN ISO 14119 to reduce defeating of guards.

Principles and measures against defeating	Type 1 device		Type 2 and type 4 devices (low level coded actuators)	Type 2 and type 4 devices (high level coded actuators)
	Rotary or linear cam safety switches	Hinge safety switches		
Installation out of reach (1)				
Shielding,physicalobstruction(2)				
Installation in hidden position (3)	X		X	
Status monitoring or cyclic testing (4)				
Non-detachable fixing of device and actuator				
Non-detachable fixing of device		M		
Non-detachable fixing of actuator		M	M	M
Additional interlocking device and plausibility check	R		R	

$X$ : obligation to apply at least one of the measures listed in the "Principles and measures to prevent circumvention" column
M : obligatory measure
$R$ : recommended measure
It is obvious that in order to meet all the requirements of EN ISO 14119, it is easier to use devices with RFID technology with a high level of coding and hinge switches, as it is necessary to fulfil only a few requirements in order to prevent circumvention of the devices themselves.
Devices with low or medium coding levels require additional measures to ensure an adequately robust application to counteract tampering.

(4) - A status monitoring can be made for example in a machine where the working cycle is easily predictable, so as to verify that at the end or during specific phases of the working cycle the guards are actually open (e.g. to remove the processed material or to make quality controls); in case the system control does not detect the guard opening actions, an alarm is generated and the machine stopped.

## Guard locking devices and holding force

The manufacturer of the guard locking device shall ensure that in the engage position, the guard locking device withstands at least the specified holding force $F_{z h}$. This force shall be at the most equal to the maximum holding force divided by a safety coefficient equal to 1.3.
For example, a device with maximum specified force $\mathrm{F}_{\mathrm{zh}}=2000 \mathrm{~N}$ must pass a test with a maximum holding force equal to $F_{1 \text { max }}=2600 \mathrm{~N}$.
An interlocking device with guard locking shall provide both the interlocking function (guard open/closed) and the guard locking function (locked/unlocked). Each of these functions may require a different PL safety level (ref. EN ISO 13849-1). In most cases the PL of the guard locking function is lower than the PL of the interlocking function. (See paragraph 8.4, note 2 of EN ISO 14119).
To highlight that an interlocking device provides also the locking monitoring, the new standard requires that the product shall have the symbol represented aside.

$$
F_{Z h}=\frac{F_{1 \max }}{1,3}
$$

## 5 - Normative present situation. Reason of changes, new standards and some overlapping

"Traditional" standards for Functional Safety as EN 954-1 had the great merit of formalizing some of the basic principles in the safety circuits analysis in accordance to deterministic principles. On the other hand they don't deal with programmable electronic devices at all, and generally they suffer the passed time. To include the programmable electronic devices in the control system analysis, the new standards approach is basically probabilistic therefore new statistical variables have been introduced.

This approach original standard is the IEC 61508 which deals the safety of complex programmable electronic systems. It's an impressive standard (divided in 8 sections for a total amount of almost 500 pages) suitable for different application fields (process industry, industrial machineries, nuclear plants), so that it has achieved the status of type A standard (not harmonized). The standard introduces the SIL concept (Safety Integrity Level) that is a probabilistic indication of a system residual risk.

From IEC 61508 comes EN 62061, which in particular concerns safety in industrial machineries complex and programmable electronic systems. The concepts introduced by this standard allow the application generally to any control system with electric, electronic and programmable electronic technology (excluding non-electric technology systems).

EN ISO 13849, developed by CEN under ISO aegis, also comes from this probabilistic approach but it tries to make the manufacturer used to the EN 954-1 concepts pass to the new concepts in a less traumatic way. The standard is applied to electromechanical, hydraulic, not complex electronic systems and to some programmable electronic systems with predefined structures. EN ISO 13849 is a type B1 standard, it introduces the PL concept (Performance Level) that is, as for SIL, a probabilistic indication of machinery residual risk. In this standard it is indicated a correlation between SIL and PL; there are concepts borrowed by EN 61508 (as DC and CCF) and it is established a reference with safety categories of EN 954-1.

In the functional safety field for control circuits safety, there are presently two standards in force (year 2013):

- EN ISO 13849-1. Type B1 standard which uses the PL concept.
- EN 62061. Type B1 standard which uses the SIL. concept.


## Important note.

EN 13849-1 is a type B1 standard, therefore if a machinery is already classified by a type C standard is this last one to prevail. All type C standards previously developed are based on concepts of EN 954-1. For manufacturers of machineries covered by a type C standard, the introduction time of new standards could be different according to the updating speed of the various technical committees.

The two standards EN 62061 and EN ISO 13849-1 show a discrete overlapping concerning the application field. For several aspects they are alike and there's a precise link between the two different symbols (SIL and PL) which indicates the two standards analysis result.

The recommendation on the two standards application ambit is stated in EN ISO 13849-1, table 1 and, as you can see, both standards can be applied for wide products typologies.

PL   EN ISO 13849-1	a		- $\mathbf{C}$	c	d	e	
SIL   EN 62061 - IEC 61508			1			3	(4)
$\mathrm{PFH}_{d}$	$10^{-4}$	$10^{-5}$	$3 \times 10^{-6}$	$10^{-6}$	$10^{-7}$		
A hazardous failure every $n$ years	$\sim 1$	~10	$\sim 40$	~100	~1000		

Table 1 - Recommended application of EN 62061 and EN ISO 13849-1

	Technology used by the part of the control system that is linked to safety	EN ISO 13849-1	EN 62061
A	Not electrical, hydraulic for example	X	Not handled
B	Electromechanical, for example relays and/ or non-complex electronics	Limited to designated architectures ${ }^{\text {a }}$ and up to $\mathrm{PL}=e$	All architectures up to SIL 3
C	Complex electronics, for example programmable	Limited to designated architectures ${ }^{\mathrm{a}}$ and up to $\mathrm{PL}=\mathrm{d}$	All architectures up to SIL 3
D	A combined with $B$	Limited to designated architectures ${ }^{\text {a }}$ and up to $\mathrm{PL}=\mathrm{e}$	$X^{\circ}$
E	C combined with B	Limited to designated architectures (see note 1) and up to $P L=d$	All architectures up to SIL 3
F	C combined with A or $C$ combined with $A$ and $B$	$X^{\text {b }}$	$X^{\text {c }}$
X indicates that the line is covered by the international standard shown in the head of the column			
b. For complex electronics: the designated architectures are used according to this part of EN ISO 13849-1 and up to PL=d, or any architecture which is compliant with EN 62061			oach to quantification of the performance N ISO 13849-1 and up to $\mathrm{PL}=\mathrm{d}$, or any of EN ISO 13849-1

Note. Taken from table 1 of EN ISO 13849-1:2006
The choice of the standard to be used is up to the manufacturer according to the adopted technology. We believe that EN ISO 13849-1 is a standard easier to apply thanks to its mediate approach and reutilization of the concepts already known to the market.
Note: In 2008 the Institute for Occupational Safety and Health of the German Social Accident Insurance (IFA) has introduced a report (BGIA Report 2/2008) on the EN ISO 13849-1 application where it is stated that the recommendations and restrictions for EN ISO 13849-1 applications must be considered obsolete, therefore even in case of programmable electronics (case $C$ and $E$ in the above table) the limit can be considered PLe.

## 6- EN ISO 13849-1 and new parameters: PL, MTTF ${ }_{\mathrm{d}}$, DC, CCF

EN ISO 13849-1 provides the manufacturer with an iterative method to assess if a machine risk can be limited to an acceptable residual risk through adequate safety functions. The adopted method provides for each risk an hypothesis-analysis-validation cycle at the end of which it must be demonstrated that every intended safety function is adequate to the related risk being considered.

The first step consists in the evaluation of the Performance Level required by each safety function. The first step consists in the evaluation of the Performance Level required by each safety function. As for EN 954-1, also EN 13849 uses a graph for a machine function risk analysis (figure A.1) determining, instead of a required safety category, a Required Performance level or PL for the safety function which protects that machine part. The machinery manufacturer, starting from the graph point 1 and answering to $\mathrm{S}, \mathrm{F}$ and P questions, will identify the PL for the intended safety function. The manufacturer then shall make a system to protect the machinery operator with a PL performance level equal or greater than the required.

Risk graph for determining required $P L_{r}$ for safety function (taken by EN 13849-1, figure A.1)


## Key

1 Starting point for evaluation of safety function's contribution to risk reduction
L Low contribution to risk reduction
H High contribution to risk reduction
$\mathbf{P L}_{\mathbf{r}}$ Required performance level

Risk parameters
S Severity of injury
S1 slight (normally reversible injury)
S2 serious (normally irreversible injury or death) frequent-to-continuous and/or exposure time is long Possibility of avoiding hazard or limiting harm
P1 possible under specific conditions
P2 scarcely possible

Note: It would be easier for a manufacturer not having to repeat the machine risk analysis and try to use the data already derived from an EN 954-1 risk analysis.
Generally this is not possible since with the new standard the risk graph changed (see figure above) therefore, with identical risks, the required safety function levels can have changed. The German Institute BGIA in its report 2008/2 on EN ISO 13849-1 suggests that a conversion could be adopted through a worst-case approach as in the following table. For further information refer to the mentioned report.

Category requested by EN 954-1		Performance Level requested (PLr) and Category requested acc. to EN ISO 13849-1
B	$\rightarrow$	b
1	$\rightarrow$	c
2	$\rightarrow$	d, Category 2
3	$\rightarrow$	d, Category 3
4	$\rightarrow$	e, Category 4

Five performance levels are set out, from PLa to PLe on risk increasing and each one of them identifies a numerical range of average probability of dangerous failure per hour. For example PLd defines that the average probability of a dangerous failure per hour is included between $1 \times 10^{-6}$ and $1 \times 10^{-7}$, that is about 1 dangerous failure every $100-1000$ years.

PL	Average probability of dan-   gerous failure per hour PFHd   $(1 / \mathrm{h})$		
a	$\geq 10^{-5}$	e	$<10^{-4}$
b	$\geq 3 \times 10^{-6}$	e	$<10^{-5}$
c	$\geq 10^{-6}$	e	$<3 \times 10^{-6}$
d	$\geq 10^{-7}$	e	$<10^{-6}$
e	$\geq 10^{-8}$	e	$<10^{-7}$

Other measures are also necessary to achieve the PL of a control system, which are: 1. The system Safety Category which derives from the architecture (structure) of the control system and its behaviour under fault conditions
2. MTTF ${ }_{d}$ of components
3. DC or system Diagnostic Coverage.

4. CCF or system Common Cause Failure.

## Safety Categories.

The majority of control circuits normally used are represented by a logic block structure:

- Input or signals input
- Logic or processing signals logic
- Output or control signals output
differently combined according to the control circuit structure.
EN ISO 13849-1 allows for five different basic circuit structures termed Designated Architectures. These architectures, combined with the faultmode behaviour and some minimum values of MTTF $_{\mathrm{d}^{\prime}}$ DC and CCF, indicate the system control Safety Category as shown in the following table. EN ISO 13849-1 Safety Categories therefore are not the same but they extend the Safety Category concept introduced by the previous EN 954-1.

Category	Summary of requirements	System behaviour	Principles used to achieve safety	MTTF of each channel	DC avg	CCF
B	Safety-related parts of control systems and/or their protective equipment, as well as their components, shall be designed, constructed, selected, assembled and combined in accordance with relevant standards so that they can withstand the expected influences. Basic safety principles shall be used.   Architecture:	The occurrence of a fault can lead to the loss of the safety function.	Mainly characterized by selection of components	Low or Medium	None	Not relevant
1	Requirements of category B shall apply. Well-tried components and well-tried safety principles shall be used.   Architecture:	The occurrence of a fault can lead to the loss of the safety function but the probability of occurrence is lower than for Category B.	Mainly characterized by selection of components	High	None	Not relevant
2	Requirements of category B and the use of well-tried safety principles shall apply. Safety function shall be checked at suitable intervals by the machine control system.	The occurrence of a fault can lead to the loss of the safety function between the checks. The loss of the safety function is detected by the check.	Mainly characterized by structure	Low to High	Low to Medium	See Annex $F$



Requirements of category B and the use When a single fault occurs the safety
Mainly characterized of well-tried safety principles shall apply. function is always performed. by structure

Low to
Low to
Safety-related parts shall be designed so Some, but not all faults will be detected. that: - a single fault in any of these parts Accumulation of undetected faults can does not lead to the loss of the safety lead to the loss of the safety function.
function, and - whenever reasonably
practicable, the single fault is detected.


Requirements of category B and the use When a single fault occurs the safety of well-tried safety principles shall apply. function is always performed.

Mainly characterized High
Safety-related parts shall be designed, Detection of accumulated faults reduso that: ces the probability of the loss of the sa-

- a single fault in any of these parts fety function (high DC).
does not lead to a loss of the safety fun- The faults will be detected in time to ction, and prevent the loss of the safety function.
- a single fault is detected at or before the next demand upon the safety function. If this is not possible, then the accumulation of undetected faults must not lead to the loss of the safety function.

High See An-(inclu- nex F ding accumulation of faults)

MTTF ("Mean Time To Dangerous Failure", ).
This parameter tries to determine the system component "safety quality" by defining its mean lifetime before a dangerous failure (note that it is not a generic failure) stated in years. Practically, the calculation of the MTTF ${ }_{\mathrm{d}}$ is based on numerical values supplied by the components manufacturers. Where there's a lack of data the standard itself lists some typical values in specific reference tables (EN ISO 13849-1 Annex C). The calculation leads to a numerical value included in three categories: High, Medium or Low.

Classification	Values
Not acceptable	MTTF $_{d}<3$ years
Low	3 years $\leq$ MTF $_{d}<10$ years
Medium	10 years $\leq$ MTTF $_{d}<30$ years
High	30 years $\leq$ MTTF $_{d} \leq 100$ years

In case of wearable components (typically mechanic and hydraulic devices), instead of the component MTTF $_{\mathrm{d}}$, the manufacturer shall provide the component $\mathrm{B}_{10 \mathrm{~d}}$ data that is the average number of the component operations until $10 \%$ of the units studied have failed dangerously.
The component $B_{10 d}$ has to be converted to MTTF $_{d}$ by the machine manufacturer with the formula:

$$
M T T F_{d}=\frac{B_{1 o d}}{0,1 \cdot n_{o p}}
$$

Where $\mathrm{n}_{\mathrm{op}}=$ component mean number of annual operations.
Assuming the machine daily operating frequency and the daily operating hours, $\mathrm{n}_{\mathrm{op}}$ can be determined from:
$n_{o p}=\frac{d_{o p} \cdot h_{o p} \cdot 3600 \mathrm{~s} / h}{t_{\text {ciclo }}}$
where
$d_{o p}=$ operating time in days per year
$h_{\text {op }}=$ operating time in hours (h) per day
$\mathrm{t}_{\text {ciclo }}^{\circ}=$ cycle time (s)
Note that the MTTF ${ }_{d}$ parameter, when it derives from a wearable component, does not depend only from the component itself but also from the application. A electromechanical device with low operating frequency, e.g. a contactor only used for emergency stop, generally has a high MTTF ${ }_{d}$ but if the same device is used for normal cycle operation here the contactor MTTF ${ }_{d}$, with low cycle time, can drop dramatically.

All the control circuit single components are used to calculate the circuit MTTF $_{d}$ according to its structure. In one channel architecture circuits (as in category $B, 1$ and 2 ) every single components contribution is linear and the channel $\mathrm{MTTF}_{\mathrm{d}}$ calculation is determined from:
$\frac{1}{M T T F_{d}}=\sum_{i=1}^{N} \frac{1}{M T T F_{d i}}$
In order to avoid too optimistic interpretation the maximum MTTF $_{d}$ value of each channel is restrained to 100 years. No channel with MTTF inferior to 3 years is allowed.

In case of two channel systems (categories 3 and 4) the circuit MTTF $_{d}$ calculation is determined from symmetrically arranging the two channels MTTF $_{\text {r }}$ using the following formula:
$M T T F_{d}=\frac{2}{3}\left[M T T F_{d C 1}+M T T F_{d C 2}-\frac{1}{\frac{1}{M T T F_{d C 1}}+\frac{1}{M T T F_{d C 2}}}\right]$

## DC ("Diagnostic Coverage").

This parameter tries to indicate the effectiveness of a system' self-test monitoring its possible failures. According to the percentage of dangerous failures detectable by the system the diagnostic coverage shall be different. The DC parameter is a percentage value which is estimated by some values stated in a table (EN ISO 13849-1 annex E) according to the measures adopted by the manufacturer to detect any anomaly in its circuit. Since, in general, there are different measures to detect different anomalies in the same circuit, the average value or $\mathrm{DC}_{\text {avg }}$ calculation results in four levels, which are:
High $\quad D C_{\text {avg }} \geq 99 \%$
Medium $90 \% \leq \mathrm{DC}_{\text {avg }}<99 \%$
Low $\quad 60 \% \leq \mathrm{DC}_{\text {avg }}^{\text {avg }}<90 \%$
None $\quad \mathrm{DC}_{\mathrm{avg}}<60 \%$
The None diagnostic coverage is admitted only for systems with architecture B or 1 .

## CCF ("Common Cause Failures")

Only in case of category 2,3 or 4 systems for the calculation of PL it is necessary also the evaluation of possible common cause failure or CCF that can invalidate the systems redundancy. The evaluation is made by a check-list (EN ISO 13849-1 Annex F) which determines points from 0 to 100 according to the adopted solutions against common cause failures. The minimum value admitted for categories 2,3 and 4 is 65 points.

## PL ("Performance Level")

Knowing all this data, EN ISO 13849-1 determines the system PL by a correlation table (EN ISO 13849-1 Annex K) or by a simplified graphic figure (EN ISO 13849-1 paragraph 4.5) as follows.


This image is very useful since it can be read from different point of view. Given a certain $P L_{\mathrm{r}}$ the graph shows all the different solutions which determine that PL, that is the possible circuit structures which provide the same PL.

For instance, observing the figure, to obtain a system having a PL equal to " $c$ " level all the following solutions are possible:

1. Category 3 system with little affordable components ( $\left.\mathrm{MTTF}_{\mathrm{d}}=l o w\right)$ and medium DC.
2. Category 3 system with affordable components $\left(M T T F_{d}=\right.$ medium) and low DC.
3. Category 2 system with affordable components ( $\mathrm{MTTF}_{\mathrm{d}}=$ medium) and medium DC.
4. Category 2 system with affordable components ( $\mathrm{MTTF}_{\mathrm{d}}=$ medium) and low DC.
5. Category 1 system with highly affordable components ( $\mathrm{MTTF}_{\mathrm{d}}=$ high).

At the same time the figure, chosen a circuit structure, allows to immediately see the max. PL reachable according to the average diagnostic coverage and the components MTTF ${ }_{\mathrm{d}}$ Therefore the manufacturer can exclude at once some circuit structures because not adequate to the required $\mathrm{PL}_{r}$.

In general though, to identify the system PL do not refer to this figure since in many cases the graphic areas superimpose on the different PL margin lines. Instead, the table in EN ISO 13849-1 Annex K can be used for a precise determination of the circuit PL.



## Notes


## Safety parameters table

The B10d data shown in the table refer to the mechanical life of the device contacts, under normal ambient conditions. NO contacts may be used within the safety circuit only if combined with an NC contact, and must be monitored (for example, by a PLC or safety module). The value in B10d for NC and NO contacts refers to a maximum electrical load equal to $10 \%$ of the current value shown in the application category. Mission time (for all items indicated below): 20 years.

## Electromechanical devices

Series	Article description	$\mathrm{B}_{10 \mathrm{~d}}(\mathrm{NO})$	$\mathrm{B}_{10 \mathrm{~d}}(\mathrm{NC})$	$\mathrm{B}_{10} / \mathrm{B}_{10 \mathrm{~d}}$
F*....•	Position switches	1,000,000	40,000,000	50\%
$\begin{aligned} & \text { F•••93 } \\ & \text { F•••92 } \end{aligned}$	Safety switches with separate actuator	1,000,000	2,000,000	50\%
$\begin{aligned} & \text { F• } \because \bullet 99 \\ & \text { F• } \because \text { R2 } \end{aligned}$	Safety switches with separate actuator with lock	1,000,000	1,000,000	50\%
FG	Safety switches with separate actuator with lock and solenoid	1,000,000	5,000,000	20\%
FS	Safety switches with separate actuator with lock and solenoid	1,000,000	4,000,000	20\%
$\begin{aligned} & \text { F•••96 } \\ & \text { F•••95 } \end{aligned}$	Safety switch with pin for hinge	1,000,000	5,000,000	20\%
F* - C.	Switches with slotted hole lever for swing guards	1,000,000	2,000,000	50\%
F. $\cdot$..-	Rope switches for emergency stop	1,000,000	2,000,000	50\%
HP - HX B•22-**	Safety hinges	1,000,000	5,000,000	20\%
SR	Magnetic safety sensors (used with compatible Pizzato Elettrica safety modules)	20,000,000	20,000,000	50\%
SR	Magnetic safety sensors (used at max. load: DC12 24 V 250 mA )	400,000	400,000	100\%
PX, PA	Foot-switches	1,000,000	20,000,000	50\%
MK	Micro position switches	1,000,000	20,000,000	50\%
NA, NB, NF	Prewired modular position switches	1,000,000	40,000,000	50\%
E2 C.0......	Contact blocks	1,000,000	40,000,000	50\%
Series	Article description		$\mathrm{B}_{10 \mathrm{~d}}(\mathrm{NC})$	$\mathrm{B}_{10} / \mathrm{B}_{10 \mathrm{od}}$
E2 1PU1••....	Single maintained buttons		2,000,000	50\%
E2 1PU20.....	Single spring-return buttons		30,000,000	50\%
E2 1PD••*•••, E2 1PT••••••	Double and triple buttons		2,000,000	50\%
E2 1PE.......	Emergency buttons		600,000	50\%
E2 1SE••••••, E2 1SL.0....	Selector switches and illuminated selector switches		2,000,000	50\%
E2 1SC••0...	Selector switches with key		600,000	50\%
E2 1PQ••....	Quadruple buttons		2,000,000	50\%
ATEX series	Article description	$\mathrm{B}_{10 \mathrm{~d}}(\mathrm{NO})$	$\mathrm{B}_{10 \mathrm{~d}}(\mathrm{NC})$	$\mathrm{B}_{10} / \mathrm{B}_{10 \mathrm{~d}}$
F- .0.0-EX-	Position switches	500,000	20,000,000	50\%
$\begin{aligned} & \text { F• ••93-EX• } \\ & \text { F•••92-EX• } \end{aligned}$	Safety switches with separate actuator	500,000	1,000,000	50\%
$\begin{aligned} & \text { F•••99-EX• } \\ & \text { F••R2-EX• } \end{aligned}$	Safety switches with separate actuator with lock	500,000	500,000	50\%
$\begin{aligned} & \text { F• ••96-EX• } \\ & \text { F•••95-EX• } \end{aligned}$	Safety switch with pin for hinge	500,000	2,500,000	20\%
F. $\cdot \bullet$ C-EX	Switches with slotted hole lever for swing guards	500,000	1,000,000	50\%
F- $\cdot$-*-EX	Rope switches for emergency stop	500,000	1,000,000	50\%

Electronic devices

Code	Article description	MTTF ${ }_{\text {d }}$	DC	PFH ${ }_{\text {d }}$	SIL CL	PL	Cat
HX BEE1-•••	Safety hinge with electronic unit	4018	H	$2.29 \mathrm{E}-11$	3	e	4
ST	Safety sensors with RFID technology	4077	H	1.46E-09	3	e	4
NG	RFID safety switches with lock	1883	H	$8.07 \mathrm{E}-10$	3	e	4
CS AM-01	Standstill monitor safety module	145	M	$1.94 \mathrm{E}-09$	2	d	3
CS AR-01, CS AR-02	Safety module for monitoring of guards and emergency stops	227	H	1.18E-10	3	e	4
CS AR-04	Safety module for monitoring of guards, emergency stops	152	H	1.84E-10	3	e	4
CS AR-05, CS AR-06	Safety module for monitoring of guards, emergency stops and light barriers	152	H	1.84E-10	3	e	4
CS AR-07	Safety module for monitoring of guards and emergency stops	111	H	7.56E-10	3	e	4
CS AR-08	Safety module for monitoring of guards, emergency stops and light barriers	218	H	4.58E-10	3	e	4
CS AR-20, CS AR-21	Safety module for monitoring of guards and emergency stops	225	H	$4.18 \mathrm{E}-10$	3	e	3
CS AR-22, CS AR-23	Safety module for monitoring of guards and emergency stops	151	H	$5.28 \mathrm{E}-10$	3	e	3
CS AR-24, CS AR-25	Safety module for monitoring of guards and emergency stops	113	H	$6.62 \mathrm{E}-10$	3	e	3
CS AR-40, CS AR-41	Safety module for monitoring of guards and emergency stops	225	H	$4.18 \mathrm{E}-10$	2	d	2
CS AR-46	Safety module for monitoring of guards and emergency stops	435	-	$3.32 \mathrm{E}-08$	1	c	1
CS AR-51	Safety module for monitoring of safety mats and bumpers	209	H	9.43E-09	3	e	4
CS AR-90	Safety module for monitoring of lift floor leveling	382	H	$5.03 \mathrm{E}-10$	3	e	4
CS AR-91	Safety module for monitoring of lift floor leveling	227	H	$1.18 \mathrm{E}-10$	3	e	4

$\mathrm{B}_{\text {wo: }}$ : Number of operations before $10 \%$ of the components have failed dangerously
$B_{10}$ : Number of operations before $10 \%$ of the components have failed

MTTF ${ }_{\mathrm{d}}$ : Mean Time To Dangerous Failure

DC: Diagnostic Coverage
PFH: Probability of Dangerous Failure per hour
PFI $H_{d}:$ Probability of Dangerous Failure per hour
SIL CL: Safety Integrity Level Claim Limit. Maximum achievable SIL according to EN 62061 PL: Performance Level. PL acc. to EN ISO 13849-1

Electronic devices							
Code	Article description	MTTF ${ }_{\text {d }}$	DC	PFH ${ }_{\text {d }}$	SIL CL	PL	Cat
CS AR-93	Safety module for monitoring of lift floor leveling	227	H	1.34E-10	3	e	4
CS AR-94	Safety module for monitoring of lift floor leveling	213	H	5.62E-09	3	e	4
CS AR-94•U12	Safety module for monitoring of lift floor leveling	227	H	1.13E-10	3	e	4
CS AR-95	Safety module for monitoring of lift floor leveling	213	H	5.42E-09	3	e	4
CS AT-0•, CS AT-1•	Safety module with timer for monitoring of guards and emergency stops	84	H	$9.01 \mathrm{E}-09$	3	e	4
CS AT-3•	Safety module with timer for monitoring of guards and emergency stops	74	H	$4.05 \mathrm{E}-09$	3	e	4
CS DM-01	Safety module for monitoring of two-hand controls	142	H	2.99E-08	3	e	4
CS DM-02	Safety module for monitoring of two-hand controls	206	H	$2.98 \mathrm{E}-08$	3	e	4
CS DM-20	Safety module for monitoring of two-hand controls	42	-	$1.32 \mathrm{E}-06$	1	c	1
CS FS-1•	Safety timer module	146	H	$1.62 \mathrm{E}-09$	3	e	4
CS FS-2•, CS FS-3•	Safety timer module	205	M	1.10E-08	2	d	3
CS FS-5•	Safety timer module	349	M	1.17E-08	2	d	3
CS ME-01	Contact expansion module	76	H	6.38E-10	(1)	(1)	(1)
CS ME-02	Contact expansion module	113	H	$2.84 \mathrm{E}-09$	(1)	(1)	(1)
CS ME-03	Contact expansion module	208	M	2.45 E-08	(1)	(1)	(1)
CS ME-20	Contact expansion module	113	H	3.07E-09	(1)	(1)	(1)
CS ME-3•	Contact expansion module	112	H	2.77E-09	(1)	(1)	(1)
CS M•201	Multifunctional safety module	133	H	$4.54 \mathrm{E}-10$	3	e	4
CS M•202	Multifunctional safety module	573	H	$4.73 \mathrm{E}-10$	3	e	4
CS M•203	Multifunctional safety module	101	H	5.74E-10	3	e	4
CS M•204	Multifunctional safety module	132	H	5.32E-10	3	e	4
CS M•205	Multifunctional safety module	406	H	$4.83 \mathrm{E}-10$	3	e	4
CS M•206	Multifunctional safety module	643	H	$2.85 \mathrm{E}-10$	3	e	4
CS M•207	Multifunctional safety module	407	H	$5.39 \mathrm{E}-09$	3	e	4
CS M•208	Multifunctional safety module	588	H	6.17E-09	3	e	4
CS M•301	Multifunctional safety module	126	H	8.92E-10	3	e	4
CS M•302	Multifunctional safety module	604	H	3.45E-10	3	e	4
CS M•303	Multifunctional safety module	459	H	9.11E-10	3	e	4
CS M•304	Multifunctional safety module	97	H	$1.01 \mathrm{E}-09$	3	e	4
CS M•305	Multifunctional safety module	503	H	$7.24 \mathrm{E}-10$	3	e	4
CS M•306	Multifunctional safety module	99	H	$8.25 \mathrm{E}-10$	3	e	4
CS M•307	Multifunctional safety module	276	H	5.84E-09	3	e	4
CS M•308	Multifunctional safety module	514	H	$6.42 \mathrm{E}-09$	3	e	4
CS M•309	Multifunctional safety module	469	H	6.61E-09	3	e	4
CS M•401	Multifunctional safety module	413	H	1.16E-09	3	e	4
CS M•402	Multifunctional safety module	452	H	6.67E-09	3	e	4
CS M•403	Multifunctional safety module	416	H	6.86E-09	3	e	4

$\mathrm{B}_{10}$ : Number of operations before $10 \%$ of the components have failed dangerously
$B_{10}$ : Number of operations before $10 \%$ of the components have failed
$B_{10} / B_{100}$ : ratio of total failures to dangerous failures,
MTTF ${ }_{d}$ : Mean Time To Dangerous Failure

DC: Diagnostic Coverage
PFH ${ }^{\text {: }}$ : Probability of Dangerous Failure per hour
SIL CLL: Safety Integrity Level Claim Limit. Maximum achievable SIL according to EN 62061 PL: Performance Level. PL acc. to EN ISO 13849-1
(1) Dependent from the base module

## EXAMPLE 1

Application: Guard monitoring

circuit in the figure has a guard monitoring function. how the system does not have inertia, that is the engine, once de-energizing the power, stops faster than opening the guard. The risk analysis shows the required $P L_{\mathrm{r}}$ target is PL c. t is necessary to verify if the assumed control system, which has a one channel structure, has a PL higher or equal to PL .

## Description of the safety function

The guard position is detected by the switch with separate actuator SS1 which operates directly on the contactor KM1. The contactor KM1 that controls the moving parts is usually activated by the buttons Start and Stop but the working cycle analysis shows that also the guard is open at every operation cycle. Consequently, the contactor and the switch number of operation can be considered equal.
The circuit structure is one channel type without supervision (category B or 1) where there are only Input (switch) and Output (contactor) components.
The safety function is not performed when a device failure occurs.
No measures for fault detection are implemented.

## Device data:

- SS1 (FX 693-M2) is a switch with positive opening (in accordance with EN 60947-5-1 Annex K). The switch is a well tested device according to EN ISO 13849-2 table D.4. The device $B_{10 d}$ value is supplied by the manufacturer (see page 271) equal to 2,000,000 operations.
- KM1 is a contactor used at nominal value. It's a well tested device in accordance with EN ISO 13849-2 table D.4. Its $\mathrm{B}_{10 \mathrm{~d}}$ value is equal to $2,000,000$ operations. This value is determined from the standard tables (see EN ISO 13849-1 table C.1).


## Assumption of the frequency of use

- It is assumed that the machinery is used for 365 days per year, for three shifts of 8 hours and 600 s cycle time. Therefore the operations per year both for the contactor and the switch is equal to maximum $N_{o p}=(365 \times 24 \times 3,600) / 600=52,560$.
- An operation of the start button every 300 seconds is assumed. The annual operations are at maximum equal to $n_{\text {op }} /$ year $=105,120$
- KM1 contactor shall be actuated both for the machine normal start-stop and the restart after the guard opening. $n_{o p} /$ year $=52,560+105,120=$ 157,680


## MTTF Calculation

TheMTTF ${ }_{d}$ of the SS1 switch is equal to: MTTF $_{d}=B_{10 \mathrm{~d}} /\left(0,1 \times n_{o p}\right)=2000000 /(0,1 \times 52560)=381$ years
TheMTTF ${ }_{d}$ of the KM1 contactor is equal to: $M T F_{d}=B_{10 d} /\left(0,1 \times n_{o p}\right)=2000000 /(0,1 \times 157680)=127$ years
In consequence the one channel circuit MTTF $_{d}$ is equal to: $1 /(1 / 381+1 / 127)=95$ years

## Diagnostic Coverage DC ${ }_{\text {avg }}$

No measures for fault detection are implemented therefore the diagnostic coverage is None, admitted condition for the considered circuit which is in category 1.

## CCF Common Cause Failure

No CCF calculation is necessary for a category 1 circuit.

## PL verification

From the standard table or figure 5 we can verify that for a Category 1 circuit with MTTF $_{d}=95$ years the resulting PL of the control circuit is PL c. Therefore the $P L_{r}$ target is reached.


EXAMPLE 2
Application: Emergency stop control


Reference standard EN ISO 13849-1

## Safety category

Performance Level
PLe


## Description of the safety function

The operation of one emergency device causes the safety module and the two contactors KM1 and KM2 to intervene.
The ES1, ES2, ES3 device signal is redundantly read by the CS safety module. Also the KM1 and KM2 contactors (with forcibly guided contacts) are monitored by CS via the feedback circuit.

## Device data:

- ES1, ES2, ES3 (FD 978-M2) are rope switches for emergency stop with positive opening. The $B_{10 d}$ value is equal to $2,000,000$ (see page 271 )
- KM1, KM2 are contactors used at nominal load. The device $B_{10 d}$ value is equal to 2,000,000 (see EN ISO 13849-1 Table C.1)
- CS is a safety module (CS AR-20) with MTTF $_{\mathrm{d}}=225$ years (see page 271) and DC= High
- The circuit architecture is two channels type in category 3


## Assumption of the frequency of use

- Twice a month $\mathrm{n}_{\mathrm{op}} /$ year $=24$
- Start button operation: 4 times a day
- Assuming 365 working day, contactors shall intervene $4 \times 365+24=1$, 484 times/year
- Switches are operated with the same frequency.
- The case of more buttons pushed together is not considered.


## MTTF Calculation

- MTTF $_{\text {dES1,ES2,ES3 }}=833.333$ years
- $\mathrm{MTTF}_{\mathrm{d} \text { KM1,KM2 } 2}^{\mathrm{dES} 1, E S 2, E S 3}=13.477$ years
- MTTF $_{\mathrm{dcs}}=225$ years
- $\mathrm{MTTF}_{\mathrm{dCH} 1}=221$ years. Value restricted to 100 years. The channels are symmetric thus $\mathrm{MTTF}_{\mathrm{d}}=100$ years (High)


## Diagnostic Coverage DC

- KM1 and KM2 contactors are monitored by CS via the feedback circuit. DC=99\% (High)
- The CS AR-20 safety module has a High diagnostic coverage.
- Not all faults in the emergency device series can be detected. The diagnostic coverage is $90 \%$ (Medium)


## CCF Common Cause Failure

We assume a score > 65 (based on EN ISO 13849-1 - annex F).

## PL verification

- A category 3 circuit with MTTF $_{\mathrm{d}}=$ High and $\mathrm{DC}_{\text {avg }}=$ High can reach a PLe.


EXAMPLE 3
Application: Guard monitoring


Reference standard EN ISO 13849-1

## Safety category

4 Performance Level PL e


## Description of the safety function

The guard opening causes the SS1 and SS2 switches to intervene; consequently the safety module and the KM1 and KM2 contactors do the same.
The SS1, SS2 device signal is redundantly monitored by the CS safety module.
The switches have a different operating principle.
Also the KM1 and KM2 contactors (with forcibly guided contacts) are monitored by CS via the feedback circuit.

## Device data:

- SS1 (FR 693-M2) is a switch with positive opening. The $B_{10 d}$ value is equal to $2,000,000$ (see page 271)
- SS2 (FR 1896-M2) is a hinge operating switch with positive opening. $\mathrm{B}_{10 \mathrm{~d}}=5.000 .000$ (see page 271)
- KM1, KM2 are contactors used at nominal load. $B_{10 d}=2,000,000$ (see EN ISO 13849-1 - Table C.1)
- CS is a safety module (CS AR-01) with MTTF $_{\mathrm{d}}=227$ years and DC= High


## Assumption of the frequency of use

365 days/year, 16 h/day, 1 operation every 4 minutes ( 240 s ). $\mathrm{n}_{\text {op }} /$ year $=87,600$

## MTTF $_{d}$ Calculation

- $\mathrm{MTTF}_{\mathrm{dss} 1}=228$ years
- $\mathrm{MTTF}_{\mathrm{dSs} 2}=571$ years
- $\mathrm{MTTF}_{\mathrm{d} \text { KM1, KM2 }}=228$ years
- $\mathrm{MTTF}_{\mathrm{dcs}}=227$ years
- $\mathrm{MTTF}_{\mathrm{dCH}}=67$ years (SS1,CS,KM1)
- MTTF $_{\mathrm{dCH} 2}=77$ years (SS2,CS,KM2)
- $\mathrm{MTTF}_{\mathrm{d}}$ : symmetrically arranging the two channels, the result is $\mathrm{MTTF}_{d}=72.1$ years (High)


## Diagnostic Coverage DC

- SS1, SS2 have DC=99\% since SS1, SS2 contacts are monitored by the CS and they have different operating principles.
- KM1 and KM2 contactors are monitored by CS via the feedback circuit. DC=99\% (High)
- The CS AR-01 has an internal redundant and self-monitoring circuit. DC = High
- $D C_{\text {avg }}=$ High


## PL verification

A category 4 circuit with $\mathrm{MTTF}_{\mathrm{d}}=72.1$ years and $\mathrm{DC}_{\mathrm{avg}}=$ High corresponds to a PL e.


EXAMPLE 4
Application: Guard monitoring


Reference standard EN ISO 13849-1
Safety category 4
Performance Level
PLe


## Description of the safety function

The opening of a guard causes the SS1, SS2 switches to intervene on the first guard and SS3, SS4 on the second; the switches trigger the safety module and the KM1 and KM2 contactors.
The SS1, SS2 and SS3, SS4 device signal is redundantly monitored by the CS safety module, furthermore the switch auxiliary contact is monitored by PLC.
The switches have a different operating principle.
Also the KM1 and KM2 contactors (with forcibly guided contacts) are monitored by CS via the feedback circuit.

## Device data:

- SS1, SS3 (FR 693-M2) are switches with positive opening. The $B_{10 d}$ value is equal to $2,000,000$ (see page 271)
- SS2, SS4 (FR 1896-M2) is a hinge operating switch with positive opening. $B_{10 d}=5.000 .000$ (see page 271)
- KM1, KM2 are contactors used at nominal load. The device $B_{10 d}$ value is equal to 2,000,000 (see EN ISO 13849-1 table C.1)
- CS is a safety module (CS AR-05) with MTTF $_{d}=152$ years and DC= High


## Assumption of the frequency of use

- 4 times per hour for $24 \mathrm{~h} /$ day and 365 days/year equal to $\mathrm{n}_{\text {op }} /$ year $=35,040$
- The contactors will operate for twice the number of operations $=70,080$


## MTTF $_{d}$ Calculation

- $\mathrm{MTTF}_{\mathrm{d} \text { SS1,Ss3 }}=571$ years; $\mathrm{MTTF}_{\mathrm{d} s \mathrm{~S} 2, \mathrm{ss} 4}=1.427$ years
- MTTF $_{\mathrm{dKM1,KM} 2}=285$ years
- $\mathrm{MTTF}_{\mathrm{dCS}}=152$ years
- MTTF $_{\mathrm{dCh} 1}=84$ years (SS1,CS,KM1) / (SS3,CS,KM1)
- $\mathrm{MTTF}_{\mathrm{dCh} 2}=93$ years (SS2,CS,KM2) / (SS4,CS,KM2)
- MTTF $_{d}$ : symmetrically arranging the two channels, the result is MTTF $_{d}=88.6$ years (High).


## Diagnostic Coverage DC ${ }_{\text {avg }}$

- KM1, KM2 contacts are monitored by CS via the feedback circuit. DC=99\%
- All auxiliary contacts of the switches are monitored by PLC. DC=99\%
- The CS AR-05 module has a DC= High (see page 271)
- The diagnostic coverage for both channels is 99\% (High)


## CCF Common Cause Failure

- We assume a score > 65 (based on EN ISO 13849-1 - annex F).


## PL verification

- A category 4 circuit with $\mathrm{MTTF}_{\mathrm{d}}=88.6$ years (High) and $\mathrm{DC}_{\text {avg }}=$ High corresponds to a PL e.

EXAMPLE 5
Application: Guard monitoring


Reference standard EN ISO 13849-1

## Safety category

3
PLe


## Description of the safety function

The opening of a guard causes the SS1, SS2 switches to intervene on the first guard and SS3, SS4 on the second; the switches trigger the safety module and the KM1 and KM2 contactors.
The SS1, SS2 and SS3, SS4 device signal is redundantly monitored by the CS safety module.
The switches have a different operating principle.
Also the KM1 and KM2 contactors (with forcibly guided contacts) are monitored by CS via the feedback circuit.

## Device data:

- SS1, SS3 (FR 693-M2) are switches with positive opening. The $B_{10 d}$ value is equal to $2,000,000$ (see page 271)
- SS2, SS4 (FR 1896-M2) is a hinge operating switch with positive opening. $\mathrm{B}_{10 \mathrm{~d}}=5.000 .000$ (see page 271)
- KM1, KM2 are contactors used at nominal load. The device $\mathrm{B}_{10 \mathrm{~d}}$ value is equal to 2,000,000 (see EN ISO 13849-1 table C.1)
- CS is a safety module (CS AR-01) with MTTF $=227$ years and DC= High


## Assumption of the frequency of use

- 2 times per hour for $16 \mathrm{~h} /$ day and 365 days/year equal to $\mathrm{n}_{\text {op }}$ /year $=11,680$
- The contactors will operate for twice the number of operations $=23,360$


## MTTF Calculation

- MTTF
$F_{\text {d Ss1,Ss3 }}=1,712$ years
- MTTF $_{\mathrm{d}} \mathrm{SSS}_{2}$, Ss $4=4,281$ years
- $\mathrm{MTTF}_{\mathrm{d} \mathrm{KM11KM2}}=856$ years
- MTTF $_{\mathrm{dcS}}^{\mathrm{d}}=222$ years
- MTTF $_{\mathrm{dCH}}^{\mathrm{dCS}}=162$ years (SS1,CS, KM1) / (SS3,CS,KM1)
- MTTF $_{\text {d CH2 }}=172$ years (SS2,CS, KM2) / (SS4,CS, KM2)
- $\mathrm{MTTF}_{\mathrm{d}}=$ value restricted to 100 years


## Diagnostic Coverage $\mathrm{DC}_{\text {avg }}$

- KM1, KM2 contacts are monitored by CS via the feedback circuit. DC=99\%
- Not all faults in the switch series can be detected. $\mathrm{DC}=60 \%$
-The CS AR-01 module has a DC= High
- We assume a diagnostic coverage of $92 \%$ (Medium)


## CCF Common Cause Failure

- We assume a score > 65 (based on EN ISO 13849-1 - annex F).


## PL verification

- A category 3 circuit with MTTF $_{\mathrm{d}}=100$ years and $\mathrm{DC}_{\text {avg }}=$ medium corresponds to a PL e.


EXAMPLE 6
Application: Guard monitoring
Reference standard EN ISO 13849-1
Safety category
4
Performance Level
PLe


## Description of the safety function

The opening of a guard causes the SS1, SS2 switches to intervene on the first guard and SS3 sensor on the second; the switches trigger the safety module and the KM1 and KM2 contactors.
The SS1, SS2 and SS3 device signals are redundantly monitored by the CS MF safety module.
There is also an emergency button, which is also connected with a double channel to the safety module.
Also the KM1 and KM2 contactors (with forcibly guided contacts) are monitored by CS MF via the feedback circuit.

## Device data:

- SS1 (FR 693-M2) is a switch with positive opening. $B_{10 d}=2,000,000$ (see page 271)
- SS3 (FR 1896-M2) is a hinge operating switch with positive opening. $\mathrm{B}_{10 \mathrm{~d}}=5.000 .000$ (see page 271)
- SS3 (SR AD40AN2) is a magnetic safety sensor. $B_{10 d}=20,000,000$ (see page 271)
- SS4 (ES AC31005) is a box with emergency button (E2 1PERZ4531) with two NC contacts. $\mathrm{B}_{10 \mathrm{~d}}=600.000$ (see page 271)
- KM1, KM2 are contactors used at nominal load. $B_{10 d}=2,000,000$ (see Table C. 1 of EN ISO 13849-1)
- CS MF201M0-P1 is a safety module with MTTF ${ }_{d}=842$ years and $D C=99 \%$


## Assumption of the frequency of use

- Each gate is opened 2 times per hour for $16 \mathrm{~h} /$ day and 365 days/year equal to $n_{\text {op }} /$ year $=11,680$
- It is assumed that the emergency pushbutton is actuated at most once a day, $\mathrm{n}_{\text {op }} /$ year $=365$
- The contactors will operate for twice the number of operations $=23,725$


## MTTF Calculation

Guard SS1/SS2

- $\mathrm{MTTF}_{\mathrm{d} \mathrm{ss1,S53}}=1,712$ years
- $\mathrm{MTTF}_{\mathrm{dSS} 2, S \mathrm{~s} 4}=4,281$ years
- $\mathrm{MTTF}_{\mathrm{d} \mathrm{KM1,KM2} 2}=843$ years
- $\mathrm{MTTF}_{\mathrm{dcs}}=842$ years
- $\mathrm{MTTF}^{\mathrm{dCS}}=338$ years (SS1,CS, KM1)
- MTTF $_{\mathrm{dCH} 2}=383$ years (SS2,CS,KM2)
- $\mathrm{MTTF}_{\mathrm{d}}=$ value restricted to 100 years


## Guard SS3

- MTTF $_{\text {d }}$ SS3 $=17,123$ years
- MTTF $_{d}$ KM1,KM2 $=843$ years
- MTTF $_{\mathrm{d}}$ CS $=842$ years
- MTTF $_{d}=411$ years
- $\mathrm{MTTF}_{\mathrm{d}}=$ value restricted to 100 years

Emergency button SS4

- MTTF SS4 2 16,438 years
- MTTF $_{\mathrm{d}}$ KM1,KM2 $=843$ years
- MTTF $_{\text {d }}$ CS $=842$ years
- $\mathrm{MTTF}_{\mathrm{d}}=410$ years
- $\mathrm{MTTF}_{\mathrm{d}}=$ value restricted to 100 years

Diagnostic Coverage DC ${ }_{\text {avg }}$

- KM1, KM2 contacts are monitored by CS MF via the feedback circuit. DC=99\%
- All faults in the device series SS1, SS2 and SS3 can be detected. DC=99\%
- The CS MF201M0-P1 module has a DC=99\%
- We assume a diagnostic coverage of 99\% (High)


## CCF Common Cause Failure

- We assume a score > 65 (based on EN ISO 13849-1 - annex F).


## PL verification

- A category 4 circuit with MTTF $_{\mathrm{d}}=100$ years and $\mathrm{DC}_{\text {avg }}=$ High corresponds to a PL e.
- The safety functions connected to guards SS1/SS2, SS3 and to the button have PL e.


EXAMPLE 7
Application: Guard monitoring

Reference standard EN ISO 13849-1 Safety category 4 Performance Level



## Description of the safety function

The machine is divided into 3 different zones: access to each area is controlled by guards, and there is a series of 4 emergency buttons. When activating the emergency button, the CS MP safety module and the forcibly guided contactors KMA1/2, KMB1/2, KMC1/2 stop all motors.
The opening of a guard in zone A causes the intervention of device SS5 or SS6, which triggers the CS MP safety module and contactors KMA1 and KMA2, thus stopping the MA motor. Devices SS5, SS6 are connected separately and with a double channel to the CS MP safety module. The opening of the guard in zone B causes the intervention of SS7, which triggers the CS MP safety module and the two contactors KMB1 and KMB2, thus stopping the MB motor. The SS7 hinge has two OSSD outputs and is controlled redundantly by the CS MP safety module.
The opening of a guard in zone C causes the intervention of device SS8, SS9 or SS10, which triggers the safety module and the two contactors KMC1 and KMC2, thus stopping the MC motor. Sensors SS8, SS9 and SS10 are connected to each other via to the OSSD outputs, and are redundantly controlled by the CS MP safety module.

## Device data

- SS1,SS2,SS3 and SS4 (ES AC31005) are emergency buttons (E2 1PERZ4531) with 2 NC contacts. $\mathrm{B}_{10 \mathrm{~d}}=600,000$ (see page 271)
- SS5 and SS6 (SR AD40AN2) are magnetic safety sensors. $B_{10 d}=20,000,000$ (see page 271)
- SS7 (HX BEE1-KSM) is a safety hinge with OSSD outputs. MTTF ${ }_{d}=4077$ years / DC=99\% (see page 271)
- SS8, SS9 and SS10 (ST DD310MK-D1T) are safety sensors with RFID technology and OSSD outputs. MTTF ${ }_{d}=4077$ years $/$ DC=99\% (see page 271)
- KMA, KMB and KMC are contactors used at nominal load. $B_{10 d}=2,000,000$ (see Table C. 1 of EN ISO 13849-1)
- CS MP202M0 is a safety module with MTTF $_{d}=2035$ years / DC=99\%


## Assumption of the frequency of use

- Each zone A gate is opened 2 times per hour for $16 \mathrm{~h} /$ day and 365 days/year equal to $\mathrm{n}_{\text {op }} /$ year $=11,680$. The contactors will operate for twice the number of operations $=23,360$
- Zone B gate is opened 4 times per hour for $16 \mathrm{~h} /$ day and 365 days/year equal to $\mathrm{n}_{\mathrm{op}} /$ year $=23,360$. The contactors will operate for a given number of operations $=23,360$
- Each zone C gate is opened once per hour for $16 \mathrm{~h} /$ day and 365 days/year equal to $\mathrm{n}_{\mathrm{op}} /$ year $=5,840$. The contactors will operate for a given number of operations $=17,520$
- It is assumed that the emergency pushbutton is actuated at most once a week, $n_{\text {op }} /$ year $=52$
- Fault exclusion: it is hypothesized that the pairs of contactors connected in parallel to the respective safety outputs are permanently cabled inside the electrical panel; therefore, the possibility of short circuit between +24 V and contactors is excluded. (see Table D.4, D.5.2 of EN ISO 13849-2).


## MTTF ${ }_{\mathrm{d}}$ Calculation

Emergency buttons

- MTTF $_{d}$ SS1/SS2/SS3/SS4 =

115,384 years

- MTTF CS = 2035 years
- MTTF $_{\mathrm{d}}$ KMC1, KMC2 $=1141$
years
- MTTF $_{\mathrm{d}}$ e-stop $=727$ years,
value restricted to 100 years

Zone A guards Zone B gate

- MTTF SS5/SS6 = 17.123 years
- MTTF $_{d}$ CS $=2035$ years
- MTTF $_{d}$ KMA1,KMA2 $=856$ years
- MTTF $_{d}$ A $=582$ years (SS5/

SS6,CS,KMA), value restricted to 100 years

- MTTF SS7 = 4.077 years
- MTTF $_{\mathrm{d}}$ CS $=2035$ years
- $\mathrm{MTTF}_{\mathrm{d}}{ }^{\mathrm{K}} \mathrm{KMB1} 1, \mathrm{KMB2}=856$ years
- MTTF $_{d}$ B $=525$ years
(SS7,CS,KMB), value restricted to
100 years

Zone C guards

- MTTF $_{\mathrm{d}}$ SS8/SS9/SS10 $=4.077$
years
- MTTF CS $=2035$ years
- $\mathrm{MTTF}_{\mathrm{d}}$ KMC1, KMC2 $=1141$
years
- MTTF $_{d}$ C $=620$ years (SS8/SS9/

SS10,CS, KMC), value restricted to 100 years

## Diagnostic Coverage DC ${ }_{\text {avg }}$

- KMA, KMB e KMC contacts are monitored by CS MP via the feedback circuit. DC=99\%
- All faults of the various devices can be detected. DC=99\%
- CS MP202M0 module has a DC=99\%
- For each function we assume a diagnostic coverage of $99 \%$

CCF Common Cause Failure

- We assume a score > 65 for all safety functions (based on EN ISO 13849-1 annex F).


## PL verification

- A category 4 circuit with $\mathrm{MTTF}_{\mathrm{d}}=100$ years and $\mathrm{DC}_{\text {avg }}=$ High corresponds to a PL e.
- All safety functions for the guards and the emergency buttons have PL e.


Any information or application example, included the connection diagrams, described in this document are to be intended as purely descriptive.
The choice and application of the products in conformity with the standards, in order to avoid damage to persons or goods, is the user's responsibility.

## 7 - Positive opening, redundancy, diversification and self-control

## Positive mode and negative mode.

According to the standard EN ISO 12100, if a mechanical component in motion, directly drives another component, through physical contact or a rigid mechanical linkage, that connection is said to be in a positive manner. Instead, if the movement of a mechanical component simply allows another element to move freely, without using direct force (for example by gravity force, spring effect, etc.) their connection is in a negative manner.


The positive mode avoids, with preventive maintenance, the dangerous failures indicated above. In negative mode, on the contrary, failures occur inside the switch and are therefore difficult to be detected.
With positive mode, internal failures (welded contacts or broken springs) allow the opening of the contacts and therefore the stop of the machine.


## Use of switches in safety applications

When a single switch is used in a safety function, it must be actuated in a positive manner. The opening contact (normally closed), must be with
"positive opening", in order to be used for safety applications. All switches with the symbol $\Theta$ are provided with NC contacts with positive opening.


Rigid non-flexible connection between the moving contacts and the actuator, where the actuating force is applied.

If the switches are two or more, it is suggested that they should operate in opposite modes, for example:

- One with a normally closed contact (opening contact) actuated by the guard in positive mode.
-The other with a normally open contact (closing contact), actuated by the guard in negative mode.
This is a common practice, however, it does not exclude, if justified, the use of two switches actuated in a positive mode (see diversification).


## Diversification

Safety in the redundant system is increased by diversification. It is obtained by the application of two limit switches with different design and/or technology, in order to avoid failures caused by the same reasons. Some examples of diversification are: the use of a switch working in positive manner together with one working in non-positive manner; a switch with mechanical actuation and one with non mechanical actuation (e.g. electronic sensor); two switches with mechanical actuator working in positive manner but with different actuation principles (e.g. one actuator operated FR 693-M2 and one hinge operated FR 1896-M2 switch).

## Redundancy

The Redundancy is the use of more than one device or system in order to guarantee that, in case of a function failure in one of them, another one is available to perform the safety functions. If the first failure is not detected, an eventual second failure may cause the loss of the safety functions.

## Self-monitoring

The Self-monitoring consists in the automatic checking of the right function of every device running in the machine working-cycle. Consequently, the next working cycle can be either accepted or rejected.

## Redundancy and self-monitoring

The combination of both systems, redundancy and self-monitoring allows that a first failure in the safety circuit does not cause the loss of safety functions. This first failure will be detected at the next re-start or anyhow before a second failure, which may cause the loss of the safety functions.

## Definitions complying with the standards EN 60947-1 and EN 60947-5-1

## Control switches

A mechanical switching device which serves the purpose of controlling the operations of switch gear or control-gear, including signalling, electrical interlocking, etc.

## Utilization category

A combination of specified requirements related to the conditions in which the switching device fulfils its purpose.

## Operating cycle

Succession of two movements, one for closure and second for opening.

## Rated current le

A current that takes into account the rated operating voltage, the rated frequency, the utilization category and the type of protective enclosure, if appropriate.

## Thermal current lth

Max. value of current to be used for temperature-rise tests of equipment without enclosure, in free air. Its value shall be least to equal to the maximum value of the rated operational current le of the equipment without enclosure, in eight-hour duty.

## Electrical endurance

Number of on-load operating cycles, under the conditions defined by the corresponding product standard, which can be made without repair or replacement.

## Mechanical endurance

Number of no-load operating cycles (i.e. without current at the main contacts), under the conditions defined by the corresponding product standard, which can be effected before it becomes necessary to service or replace any mechanical parts.

## Contact element

The parts, fixed or movable, conducting or insulating, of a control switch necessary to close and open one single conducting path of a circuit.

## Single interruption contact element

Contact element which opens or closes the conducting path of its circuit in one location only.

## Double interruption contact element

Contact element which opens or closes the conducting path of its circuit in two locations in series.

## Make-contact element (normally open)

Contact element which closes a conducting path when the control switch is actuated.

## Break-contact element (normally closed)

Contact element which opens a conducting path when the control switch is actuated.

## Change-over contact elements

Contact element combination which includes one make-contact element and one break-contact element.

## Electrically separated contact elements

Contact elements belonging to the same control switch, but adequately insulated from each other, so they can be connected to electric circuits with different tension.

## Independent action contact element (snap action)

Contact element of a manual or automatic control device in which the velocity of contact motion is substantially independent of the actuator's motion velocity.

## Dependent action contact element (slow action)

Contact element of a manual or automatic control device, the contact motion velocity of which depends on the actuator's motion velocity.

## Minimum actuating force

The minimum force value to be applied to the actuator that will cause all contacts to reach their switched position.

## Position switch

Pilot switch the actuating system of which is operated by a moving part of the machine, when that part reaches a predetermined position.

## Foot switch

Control switch having an actuator intended to be operated by the force exerted by a foot.

## Pre-travel of the actuator

The maximum travel of the actuator which does not cause any travel of the contact elements.

## Ambient temperature

The air temperature determined under prescribed conditions surrounding the complete switching device.

## Rated operating voltage Ue

Voltage which, combined with the rated operational current le, determinates the application of the equipment and the referred utilization categories.

## Rated insulation voltage Ui

Voltage to which dielectric test voltage and creepage distances are referred.

## Impulse withstand voltage Uimp

The highest peak value of an impulse voltage, of a prescribed shape and polarity, which does not cause destructive discharge under the specified test conditions.

## Contact blocks

Contact element or contact elements combination which can be combined with similar units, operated by a common actuating system

## Markings and quality marks

## CE marking

CThe CE marking is a mandatory declaration made by the manufacturer of a product in order to indicate that the product satisfies all requirements foreseen by the directives (regulated by the European Community) on subjects of safety and quality. Its function therefore is to guarantee to the governing authorities of the various countries the fulfilment of their obligations under the law.

## IMQ marking

The IMQ (Italian Institute of the Quality Mark) is the organization in Italy (third and independent) whose task is to check and certify the compliance of the materials and the equipment with the safety standards (CEI standards in the electric and electronic branch). This voluntary conformity certification is a guarantee of quality, safety and technical value.

## UL marking

c U. USUL (Underwriters Laboratories Inc.) is an independent non-profit laboratory that tests materials, devices, products, equipment, constructions, methods and systems with regard to their risk for human life and goods according to the standard in force in the United States and Canada. Regulations and testing made by UL is often taken as valid, by many governing authorities, with regard to conformity with local regulations on the subject of safety.

## CCC marking

The CQC is the organization in the Chinese Popular Republic whose task is to check and certify the low voltage electrical material.
This organization issues the product mark CCC which certifies the passing of electrical/mechanical conformity tests by products and the compliance of the company quality system with required standards. To obtain the mark, the Chinese organization makes preliminary company visits and periodical verification inspections. Position switches cannot be sold in the Chinese territory without this mark.

## TÜV SÜD certification mark



TÜV SÜD is an international authority claiming long-standing experience in the certification of operating safety for electrical, electromechanical and electronic products. In the course of type approval, TÜV SÜD closely inspects the quality throughout all the stages concerning product development, from software design and completion, to production and to the tests conducted according to ISO/IEC standards. The operating safety certification is obtained voluntarily and has a high technical value, since it not only certifies the electrical safety of the product, but also its specific operating suitability for use in safety applications according to the IEC 61508 standard.

## EAC marking

E月[The EAC certificate of conformity is a certificate issued by a Customs Union certification body formed by Russia, Belarus and Kazakhstan, with which the conformity of a product is certified with the essential safety requirements laid down by one or more Technical Regulations (Directives) of the Customs Union.

## International and European Standards

EN 50041: Low voltage switchgear and controlgear for industrial use. Control switches. Position switches $42.5 \times 80 \mathrm{~mm}$. Dimensions and features
EN 50047: Low voltage switchgear and controlgear for industrial use. Control switches. Position switches $30 \times 55 \mathrm{~mm}$. Dimensions and features
EN ISO 14119: Safety of machinery. Interlocking devices associated with guards. Design and selection principles.
EN ISO 12100: Safety of machinery. General design principles. Risk assessment and risk reduction.
EN ISO 13849-1: Safety of machinery. Safety-related parts of control systems. Part 1: General principles for design.
EN ISO 13850: Safety of machinery. Devices for emergency stop, functional aspects. Design principles.
EN 61000-6-3 (equivalent to IEC 61000-6-3): Electromagnetic compatibility. Generic emission standard. Part 1:
residential, commercial and light-industrial environments
EN 61000-6-2 (equivalent to IEC 61000-6-2 ): Electromagnetic compatibility. Generic immunity standard. Part 2: Industrial environments.
EN ISO 13855: Safety of machinery. Positioning of safeguards with respect to the approach speeds of parts of the human body
EN 1037: Safety of machinery. Prevention of unexpected start-up.
EN 574: Safety of machinery. Two-hand control devices. Functional aspects. Principles for design.
EN 60947-1 (equivalent to IEC 60947-1): Low-voltage switchgear and controlgear. Part 1: General rules.
EN 60947-5-1 (equivalent to IEC 60947-5-1 ): Low-voltage switchgear and controlgear. Part 5: Devices for control and operation circuits
Section 1: Electromechanical control circuit devices.
EN 60947-5-2: Low-voltage switchgear and controlgear. Part 5-2: Control circuit devices and switching elements - Proximity switches
EN 60947-5-3: Low-voltage switchgear and controlgear. Part 5-3: Control circuit devices and switching elements - Requirements for proximity devices with defined behaviour under fault conditions (PDF)
EN 60204-1 (equivalent to IEC 60204-1): Safety of machinery. Electrical equipment of machines. Part 1: General rules.
EN 60529 (equivalent to IEC 60529): Protection degree of the housings (IP codes).
EN 62326-1 (equivalent to IEC 62326-1): Printed boards. Part 1: Generic specification
EN 60664-1 (equivalent to IEC 60664-1): Insulation coordination for equipment within low-voltage systems
Part 1: Principles, requirements and tests.
EN 61508 (equivalent to IEC 61508): Functional safety of electrical, electronic and programmable electronic systems for safety applications
EN 62061 (equivalent to IEC 62061): Safety of machinery - Functional safety of safety-related electrical, electronic and programmable electronic control systems.
EN 60079-0 (equivalent to IEC 60079-0): Electrical apparatus for potentially explosive atmospheres. General rules
EN 60079-11 (equivalent to IEC 60079-11): Electrical apparatus for potentially explosive atmospheres. Intrinsic safety "i"
EN 60079-31 (equivalent to IEC 60079-31): Electrical apparatus for potentially explosive atmospheres. Type of protection " $n$ ".
EN 60079-28 (equivalent to IEC 60079-28): Electrical apparatus for use in the presence of combustible dust. Part 1-1: construction and testing
BG-GS-ET-15: Prescriptions about how to test switches with forced contact opening to be used in safety applications (German standard).
UL 508: Standard for industrial control equipment. (American standard).
CSA 22-2 no. 14: Standard for industrial control equipment. (Canadian standard).

## European directives

2006/95/EC	Directive on low-voltage switchgear and controlgear
2006/42/EC	Machinery Directive
2004/108/EC	Directive on electromagnetical compatibility
94/9/EC	ATEX Directive

## Regulatory Organisations

CEI	Comitato Elettrotecnico Italiano (IT)	NF
CSA	Canadian Standard Association (CAN)	VDE
CENELEC	European Committee for Electrotechnical Standardisation	UNI
CEN	European Committee for Standardisation	UL
IEC	International Electrotechnical Commission	TUV

Normes Françaises (FR)<br>Verband Deutscher Elektrotechniker (DE)<br>Ente Nazionale Italiano di Unificazione (IT)<br>Underwriter's Laboratories (USA)<br>Technischer Überwachungs-Verein (DE)

## Protection degree of the housings for electrical material according to IEC 60529

This table indicates the protection degrees according to IEC 60529, EN 60529, CEI 70-1 standards.
The degrees are identified by the letters IP and 2 numbers. 2 more letters can be added, in order to give the protection degree for people or other features. The first number means the degree of protection against penetration of external solid materials. The second one indicates the degree of protection against penetration of water.

$\begin{gathered} 1 \text { st } \\ \text { number } \end{gathered}$	Description	Protection for the machine	Protection for persons	$\begin{aligned} & \text { 2nd } \\ & \text { number } \end{aligned}$	Description	Protection for persons
0		Not protected	Not protected	0		Not protected
1		Protected from solid bodies of more than 50 mm in diameter	No access to hazardous parts with back of the hands ( $\varnothing 50 \mathrm{~mm}$ )	1		Protected from drops of water falling vertically
2		Protected from solid bodies of more than 12 mm in diameter	No access to hazardous parts with a finger ( $\varnothing 12 \mathrm{~mm}$ )	2		Protected from drops of water at an angle of $15^{\circ}$ max.
3		Protected from solid bodies of more than 2.5 mm in diameter	No access to hazardous parts with tool ( $\varnothing 2.5 \mathrm{~mm}$ )	3		Protected from drops of water at an angle of $60^{\circ}$ max.
4		Protected from solid bodies of more than 1 mm in diameter	No access to hazardous parts with wire ( $\varnothing 1 \mathrm{~mm}$ )	4		Protected from splashes of water around it
5	Eaio	Protected from dust	No access to hazardous parts with wire ( $\varnothing 1 \mathrm{~mm}$ )	5		Protected from jets of water discharged around it
6		Totally protected from dust	No access to hazardous parts with wire ( $\varnothing 1 \mathrm{~mm}$ )	6		Protected from strong jets of water around it
				7		Protected from temporary water immersion ( 30 minutes in a depth of one meter)
				8		Protected from continuous water immersion by aggrement

## Protection degree IP69K according to ISO 20653



ISO 20653 provides a particularly stringent test. The standard provides that a device has to pass a particularly heavy test which simulates the conditions of pressure washing in industrial environments with water jets having pressure between 80 and 100 bar, flow rate between 14 and $16 \mathrm{I} / \mathrm{min}$. and temperature $80^{\circ} \mathrm{C}$.

Test specifications:
Rotation speed (B): $5 \pm 1 \mathrm{rpm}$
Distance from water jet (A): $\quad 100+50 /-0 \mathrm{~mm}$
Water flow rate: $\quad 15 \pm 1 \mathrm{I} / \mathrm{min}$
Water pressure: $\quad 9000 \pm 1000 \mathrm{kPa}$
Water temperature: $80 \pm 5^{\circ} \mathrm{C}$
Test duration: 30 s each position

## Housing features in accordance with UL (UL 508) and CSA (C22-2 no.14) approvals

The features required for a housing are determined by a specific environmental designation and other features like the kind of gasket or the use of solvent materials.

Type Use guidance and description
1 Mainly for indoor utilization, supplied with protection against contact with the internal mechanism and against a limited quantity of falling dirt.

4X
Both indoor and open-air utilization, supplied with a protection degree against falling rain, sprinkling of water and direct water from the pipe. It is not damaged by the freezing of the housing and is rust-proof. Resistant against corrosion.
Indoor utilization, supplied with a protection degree against dust, dirt, flying fibres, dripping water and outside condensation of noncorrosive fluids. Indoor utilization, supplied with a protection degree against gauze, dust penetration, outside condensation and sprinkling of water, oil and non-corrosive fluids.

## Pollution degree (of environmental conditions) according to EN 60947-1

According to the standard IEC 60947-1, the pollution degree is a conventional number based on the quantity of conducting hygroscopic dust, ionized gas or salt, on the relative humidity and on the frequency of occurrence, which is translated into hygroscopic absorption or humidity condensation, having the effect of reducing the dielectric rigidity and/or surface resistivity. In equipment to be used inside a housing or having an integral enclosure as part of the device, the pollution degree applies to the inner part of housing. With the purpose of evaluating the air and surface insulation distances, the following four pollution degrees are defined:

## Degree

## Description

No pollution or only dry and non-conductive pollution occurs.

2 Normally, only non-conductive pollution is present. Occasionally some temporary conductivity caused by condensation may occur.
3 Some conductive pollution is present, or some dry non-conductive pollution that becomes conductive because of condensation.

4
Pollution causes persistent conductivity, for instance because of conductive dust or rain or snow.

Where not otherwise specified by the applicable standard for the product, equipment for industrial applications are generally intended for their use in environment with pollution degree 3. Nevertheless, other degrees can be considered, depending on the micro-environment or on the particular applications.

## Utilization categories for switching elements according to EN 60947-5-1

Alternate current utilization

Utilization   category	Description
AC12	Control of resistive loads and solid state loads with insulation by optocouplers.
$\mathbf{A C 1 3}$	Control of solid state loads with transformer isolation
$\mathbf{A C 1 4}$	Control of electromagnetic loads, power $\leq 72 \mathrm{VA}$
$\mathbf{A C 1 5}$	Control of electromagnetic loads, power $\geq 72 \mathrm{VA}$

Direct current utilization

## Utilization category

## Destination

DC12 Control of resistive loads and solid state loads with insulation by optocouplers.
DC13 Control of electromagnet loads without economy resistors in circuit
DC14
Control of electromagnet loads with economy resistors in circuit

Legend:
FA $\bullet \bullet-$ EX5 The dots indicate a generic alphanumeric character

Article	Page	Article	Page
FA ••••-EX5	189	FK ••15-XM1R28	219
FC ••01-M2	49	FK ••16-M1	107
FC ••02-M2	49	FK ••17-M1	107
FC ••04-M2	49	FK ••20-M1	107
FC ••05-M2	49	FK ••21-M1	107
FC ••08-M2	49	FK $\bullet \cdot 25-\mathrm{M} 1$	107
FC ••10-M2	49	FK ••30-M1	107
FC ••11-M2	49	FK ••30-W3M1	107
FC ••15-M2	49	FK ••30-XM1V38	219
FC ••16-M2	49	FK ••31-M1	107
FC ••18-M2	49	FK ••31-W3M1	107
FC ••19-M2	49	FK ••31-XM1V38	219
FC • $\cdot 20-\mathrm{M} 2$	49	FK ••33-M1	107
FC ••21-M2	49	FK ••34-M1	107
FC ••25-M2	49	FK ••38-M1	107
FC ••31-M2	49	FK ••38-W3M1	107
FC - $32-\mathrm{M} 2$	49	FK ••50-M1	107
FC ••33-M2	49	FK ••51-M1	107
FC ••34-M2	49	FK ••51-W3M1	107
FC • $35-\mathrm{M} 2$	49	FK ••51-XM1V38	219
FC ••36-M2	49	FK ••52-M1	107
FC ••38-M2	49	FK ••52-W3M1	107
FC ••51-M2	49	FK ••53-••••M1	107
FC • $52-\mathrm{M} 2$	49	FK ••54-M1	107
FC ••53--••••M2	49	FK ••54-W3M1	107
FC ••56-M2	49	FK ••54-XM1V38	219
FC ••57-M2	49	FK ••55-M1	107
FC ••58-M2	49	FK ••56-M1	107
FC ••76-M2	49	FK ••56-W3M1	107
FD ••01-M2	19	FK ••56-XM1V38	219
FD ••02-M2	19	FK ••57-M1	107
FD ••04-M2	19	FK ••57-W3M1	107
FD ••05-M2	19	FK ••69-M1	107
FD ••08-M2	19	FK ••76-M1	107
FD ••10-M2	19	FK ••93-XM1	219
FD ••11-M2	19	FK ••96-XM1	219
FD ••15-M2	19	FK ••A1-XM1	219
FD ••16-M2	19	FK ••A2-M1	107
FD ••18-M2	19	FK ••A4-M1	107
FD ••19-M2	19	FK ••A5-M1	107
FD $\cdot \bullet 20-\mathrm{M} 2$	19	FK ••A7-M2	107
FD ••21-M2	19	FL ••01-M2	39
FD $\cdot \bullet 25-\mathrm{M} 2$	19	FL ••02-M2	39
FD ••31-M2	19	FL ••04-M2	39
FD ••32-M2	19	FL ••05-M2	39
FD - $33-\mathrm{M} 2$	19	FL ••08-M2	39
FD ••34-M2	19	FL ••10-M2	39
FD ••35-M2	19	FL ••11-M2	39
FD ••36-M2	19	FL ••15-M2	39
FD $\cdot \bullet 38-\mathrm{M} 2$	19	FL ••16-M2	39
FD ••40-M2	19	FL ••18-M2	39
FD ••41-M2	19	FL ••19-M2	39
FD ••42-M2	19	FL ••20-M2	39
FD ••51-M2	19	FL ••21-M2	39
FD ••52-M2	19	FL ••25-M2	39
FD ••53-••••M2	19	FL ••31-M2	39
FD ••56-M2	19	FL ••32-M2	39
FD ••57-M2	19	FL ••33-M2	39
FD ••58-M2	19	FL ••34-M2	39
FD ••76-M2	19	FL ••35-M2	39
FD •••-M2-EX7	159	FL ••36-M2	39
FD ••••-M2-EX8	177	FL ••38-M2	39
FD ••••-M2-EX4	193	FL ••40-M2	39
FD •••-M2T2	189	FL ••41-M2	39
FK ••01-M1	107	FL ••42-M2	39
FK ••01-W3M1	107	FL ••51-M2	39
FK ••01-XM1	219	FL ••52-M2	39
FK ••02-M1	107	FL ••53-••••M2	39
FK ••02-W3M1	107	FL ••56-M2	39
FK ••02-XM1	219	FL ••57-M2	39
FK ••05-M1	107	FL ••58-M2	39
FK ••05-W3M1	107	FL ••76-M2	39
FK ••05-XM1	219	FL ••••-M2-EX7	165
FK ••07-M1	107	FL ••••-M2-EX8	183
FK ••07-W3M1	107	FL ••••-M2-EX4	199
FK ••07-XM1	219	FM ••01-M2	71
FK ••08-M1	107	FM ••01-W3M2	71
FK ••10-M1	107	FM ••02-M2	71
FK ••12-M1	107	FM ••02-W3M2	71
FK ••13-M1	107	FM ••05-M2	71
FK ••14-M1	107	FM ••05-W3M2	71
FK ••15-M1	107	FM ••07-M2	71
FK ••15-M1R28	107	FM ••07-W3M2	71
FK ••15-W3M1	107	FM ••08-M2	71


Article	Page	Article	Page
FM ••12-M2	71	FR ••05-XM2	219
FM ••13-M2	71	FR ••07-M2	59
FM ••14-M2	71	FR ••07-W3M2	59
FM ••15-M2R28	71	FR ••07-XM2	219
FM ••15-W3M2R28	71	FR ••08-M2	59
FM ••16-M2	71	FR ••10-M2	59
FM $\bullet \cdot 20-\mathrm{M} 2$	71	FR ••12-M2	59
FM ••21-M2	71	FR ••13-M2	59
FM $\bullet \cdot 25-M 2$	71	FR ••14-M2	59
FM ••30-M2	71	FR ••15-M2	59
FM ••30-W3M2	71	FR ••15-M2R28	59
FM •31-M2	71	FR ••15-W3M2	59
FM ••31-W3M2	71	FR ••15-XM2	219
FM ••33-M2	71	FR ••16-M2	59
FM ••34-M2	71	FR ••17-M2	59
FM ••38-M2	71	FR ••20-M2	59
FM ••38-W3M2	71	FR ••21-M2	59
FM ••50-M2	71	FR ••25-M2	59
FM ••51-M2	71	FR ••30-M2	59
FM ••51-W3M2	71	FR ••30-W3M2	59
FM ••52-M2	71	FR ••30-XM2V38	219
FM ••52-W3M2	71	FR ••31-M2	59
FM $\bullet \bullet 53-\bullet \bullet \bullet$ M2	71	FR ••31-W3M2	59
FM ••54-M2	71	FR ••31-XM2V38	219
FM ••54-W3M2	71	FR ••33-M2	59
FM ••55-M2	71	FR ••34-M2	59
FM ••56-M2	71	FR ••38-M2	59
FM ••56-W3M2	71	FR ••38-W3M2	59
FM ••57-M2	71	FR ••50-M2	59
FM ••57-W3M2	71	FR ••51-M2	59
FM ••69-M2	71	FR ••51-W3M2	59
FM ••76-M2	71	FR ••51-XM2V38	219
FM ••A2-M2	71	FR ••52-M2	59
FM ••A4-M2	71	FR ••52-W3M2	59
FM ••A5-M2	71	FR ••53-••••M2	59
FM ••A7-M2	71	FR ••54-M2	59
FM ••••-M2-EX7	171	FR ••54-W3M2	59
FP ••01-M2	29	FR ••54-XM2V38	219
FP ••01-XM2	219	FR ••55-M2	59
FP ••02-M2	29	FR ••56-M2	59
FP ••02-XM2	219	FR ••56-W3M2	59
FP ••04-M2	29	FR ••56-XM2V38	219
FP ••05-M2	29	FR ••57-M2	59
FP ••05-XM2	219	FR ••57-W3M2	59
FP ••08-M2	29	FR ••69-M2	59
FP ••08-XM2	219	FR ••73-M2	217
FP ••10-M2	29	FR ••76-M2	59
FP ••10-XM2	219	FR ••93-XM2	219
FP ••11-M2	29	FR ••96-XM2	219
FP ••11-XM2	219	FR ••A1-M2	59
FP ••15-M2	29	FR ••A1-XM2	219
FP ••16-M2	29	FR ••A2-M2	59
FP ••16-XM2	219	FR ••A4-M2	59
FP ••18-M2	29	FR ••A5-M2	59
FP ••19-M2	29	FR ••A7-M2	59
FP ••20-M2	29	FW ••92-XM2	219
FP ••21-M2	29	FX ••01-M2	83
FP ••25-M2	29	FX ••01-W3M2	83
FP ••31-M2	29	FX ••01-XM2	219
FP ••32-M2	29	FX ••02-M2	83
FP ••33-M2	29	FX ••02-W3M2	83
FP ••34-M2	29	FX ••02-XM2	219
FP ••35-M2	29	FX ••05-M2	83
FP ••36-M2	29	FX ••05-W3M2	83
FP ••38-M2	29	FX ••05-XM2	219
FP ••40-M2	29	FX ••07-M2	83
FP ••41-M2	29	FX ••07-W3M2	83
FP ••42-M2	29	FX ••07-XM2	219
FP ••51-M2	29	FX ••08-M2	83
FP ••52-M2	29	FX ••12-M2	83
FP ••53-•••••M2	29	FX ••13-M2	83
FP ••56-M2	29	FX ••14-M2	83
FP ••57-M2	29	FX ••15-M2	83
FP ••58-M2	29	FX ••15-M2R28	83
FP ••76-M2	29	FX ••15-W3M2	83
FR ••01-M2	59	FX ••15-XM2	219
FR ••F1-M2	217	FX ••16-M2	83
FR ••01-W3M2	59	FX ••20-M2	83
FR ••01-XM2	219	FX ••21-M2	83
FR ••02-M2	59	FX ••25-M2	83
FR ••02-W3M2	59	FX ••30-M2	83
FR ••02-XM2	219	FX ••30-W3M2	83
FR ••05-M2	59	FX ••30-XM2V38	219
FR ••05-W3M2	59	FX ••31-M2	83


Article	Page	Article	Page
FX ••31-W3M2	83	NB B02•••-•••	117
FX ••31-XM2V38	219	NB B12•••-•••	117
FX ••33-M2	83	NB B22•••-•••	117
FX ••34-M2	83	NB G11 •••-*••	117
FX ••38-M2	83	NB G02•••-•••	117
FX ••38-W3M2	83	NB G12•••-•••	117
FX ••50-M2	83	NB G22•••-•••	117
FX ••51-M2	83	NF B11 •••-•••	129
FX ••51-W3M2	83	NF B02•••-•••	129
FX ••51-XM2V38	219	NF B12•••-•••	129
FX ••52-M2	83	NF B22•••-•••	129
FX ••52-W3M2	83	NF G11 •••-•••	129
FX ••53-••••M2	83	NF G02•••-•••	129
FX ••54-M2	83	NF G12•••-•••	129
FX ••54-W3M2	83	NF G22•••-•••	129
FX ••54-XM2V38	219	AC35	154
FX ••55-M2	83	VF AC72	154
FX ••56-M2	83	VF AC83	154
FX ••56-W3M2	83	VF AD••••••	232
FX ••56-XM2V38	219	VF B••••	215
FX ••57-M2	83	VF C••	154
FX ••57-W3M2	83	VF CA•••••	225
FX ••69-M2	83	VF CBM•••••••	227
FX ••76-M2	83	VF CCM $\bullet \bullet \bullet \bullet \bullet$	227
FX ••93-XM2	219	VF CN••••	225
FX ••96-XM2	219	VF D16B	117
FX ••A2-M2	83	VF DFP•••	233
FX ••A4-M2	83	VF IL••••••	234
FX ••A5-M2	83	VF L31	19
FX ••A7-M2	83	VF L31-•	19
FZ ••01-M2	95	VF L32	19
FZ ••01-W3M2	95	VF L33	19
FZ ••02-M2	95	VF L34	19
FZ ••02-W3M2	95	VF L35	19
FZ ••05-M2	95	VF L35-•	19
FZ ••05-W3M2	95	VF L36	19
FZ ••07-M2	95	VF L41	19
FZ ••07-W3M2	95	VF L42	19
FZ ••08-M2	95	VF L51	19
FZ ••12-M2	95	VF L51-•	19
FZ ••13-M2	95	VF L52	19
FZ ••14-M2	95	VF L52-•	19
FZ ••15-M2R28	95	VF L53	19
FZ ••15-W3M2R28	95	VF L56	19
FZ ••16-M2	95	VF L56-•	19
FZ ••20-M2	95	VF L57	19
FZ ••21-M2	95	VF L57-•	19
FZ ••25-M2	95	VF LE30	59
FZ ••30-M2	95	VF LE31	59
FZ ••30-W3M2	95	VF LE31-•	59
FZ ••31-M2	95	VF LE33	59
FZ ••31-W3M2	95	VF LE34	59
FZ ••33-M2	95	VF LE50	59
FZ ••34-M2	95	VF LE51	59
FZ ••38-M2	95	VF LE51-•	59
FZ ••38-W3M2	95	VF LE52	59
FZ ••50-M2	95	VF LE52-•	59
FZ ••51-M2	95	VF LE53	59
FZ ••51-W3M2	95	VF LE54	59
FZ ••52-M2	95	VF LE54-•	59
FZ ••52-W3M2	95	VF LE55	59
FZ ••53-•••M2	95	VF LE55-•	59
FZ ••54-M2	95	VF LE56	59
FZ ••54-W3M2	95	VF LE56-•	59
FZ ••55-M2	95	VF LE57	59
FZ ••56-M2	95	VF LE57-•	59
FZ ••56-W3M2	95	VF LE69	59
FZ ••57-M2	95	VF MK••••	154
FZ ••57-W3M2	95	VF PA $\bullet \bullet \bullet \bullet \bullet$	232
FZ ••69-M2	95	VF PB••••••	205
FZ $\bullet \bullet$ A2-M2	95	VF PF••••••	233
FZ ••A4-M2	95	VF PT•••	232
FZ ••A5-M2	95	VF SFP•	234
FZ ••A7-M2	95	VF VAIT1T••	233
MK •••••	143	VF VAM $\bullet \bullet \bullet \bullet \bullet-X$	233
NA B11 •••-•••	117	VN A••••	117
NA B02•••-••	117	VN CM•••••	117
NA B12•••-•••	117	VN CP•••••	117
NA B22•••-•••	117	VN DT1F	117
NA G11 $\bullet \bullet \bullet \bullet \bullet \bullet$	117		
NA G02•••-•••	117		
NA G12•••-*•	117		
NA G22•••-•••	117		
NB B11 $\bullet \bullet \bullet \bullet \bullet \bullet$	117		

Legend:
The codes in grey have been replaced by the code after the arrow

## Old

 articleFA 4101-•DN $\rightarrow$ FA 4101-KDM $\rightarrow$ FA 4102-•DN $\rightarrow$ FA 4102-KDM $\rightarrow$ FA 4108-•DN $\rightarrow$ FA 4108-KDM $\rightarrow$ FA 4110-•DN $\rightarrow$ FA 4110-KDM $\rightarrow$ FA 4111-•DN $\rightarrow$ FA 4111-KDM $\rightarrow$ FA 4112-•DN $\rightarrow$ FA 4112-KDM $\rightarrow$ FA 4113-•DN $\rightarrow$ FA 4113-KDM $\rightarrow$ FA 4115-DN $\rightarrow$ FA 4115-KDM $\rightarrow$ FA 4117-•DN $\rightarrow$ FA 4117-KDM $\rightarrow$ FA 4120-•DN $\rightarrow$ FA $4120-K D M \rightarrow$ FA $4125-$ DN $\rightarrow$ FA 4125-KDM $\rightarrow$ FA 4130-•DN $\rightarrow$ FA 4130-KDM $\rightarrow$ FA 4131-•DN $\rightarrow$ FA 4131-KDM $\rightarrow$ FA 4133-•DN $\rightarrow$ FA 4133-KDM $\rightarrow$ FA 4134-•DN $\rightarrow$ FA 4134-KDM $\rightarrow$ FA 4140-•DN $\rightarrow$ FA 4140-KDM $\rightarrow$ FA $4150-$ - DN $\rightarrow$ FA 4150-KDM $\rightarrow$ FA 4151-•DN $\rightarrow$ FA 4151-KDM $\rightarrow$ FA 4152-•DN $\rightarrow$ FA 4152-KDM $\rightarrow$ FA $4154-\bullet$ DN $\rightarrow$ FA 4154-KDM $\rightarrow$ FA 4155-•DN $\rightarrow$ FA $4155-K D M \rightarrow$ FA 4156-•DN $\rightarrow$ FA 4156-KDM $\rightarrow$ FA 4157-•DN $\rightarrow$ FA 4157-KDM $\rightarrow$ FA 4169-•DN $\rightarrow$ FA 4169-KDM $\rightarrow$ FA 4501-•DN $\rightarrow$ FA 4501-KDM $\rightarrow$ FA 4502-•DN $\rightarrow$ FA 4502-KDM $\rightarrow$ FA 4508-•DN $\rightarrow$ FA 4508-KDM $\rightarrow$ FA $4510-\bullet$ DN $\rightarrow$ FA 4510-KDM $\rightarrow$ FA 4511-•DN $\rightarrow$ FA 4511-KDM $\rightarrow$ FA 4512-•DN $\rightarrow$ FA 4512-KDM $\rightarrow$ FA 4513-•DN $\rightarrow$ FA 4513-KDM $\rightarrow$ FA 4515-•DN $\rightarrow$ FA 4515-KDM $\rightarrow$ FA 4517-•DN $\rightarrow$ FA 4517-KDM $\rightarrow$ FA 4520-•DN $\rightarrow$ FA 4520-KDM $\rightarrow$ FA 4525-•DN $\rightarrow$ FA 4525-KDM $\rightarrow$ FA 4530-•DN $\rightarrow$ FA 4530-KDM $\rightarrow$ FA 4531-•DN $\rightarrow$ FA 4531-KDM $\rightarrow$ FA 4533-•DN $\rightarrow$ FA 4533-KDM $\rightarrow$ FA $4534-$ DN $\rightarrow$ FA 4534-KDM $\rightarrow$ FA 4540-•DN $\rightarrow$ FA 4540-KDM $\rightarrow$

## New <br> article

NA B110AB-DN• NA B110AB-DMK NA B110CP-DN• NA B110CP-DMK NA B110AE-DN• NA B110AE-DMK NA B110EB-DN• NA B110EB-DMK NA B110FB-DN• NA B110FB-DMK NA B110FB-DN•H0 NA B110FB-DMKH0 NA B110EE-DN• NA B110EE-DMK NA B110BB-DN• NA B110BB-DMK NA B110BB-DN•HO NA B110BB-DMKH0 NA B110HB-DN• NA B110HB-DMK NA B110HE-DN• NA B110HE-DMK NA B112KA-DN• NA B112KA-DMK NA B112KC-DN• NA B112KC-DMK NA B112LB-DN• NA B112LB-DMK NA B112LL-DN• NA B112LL-DMK NA B112KD-DN• NA B112KD-DMK NA B112LE-DN• NA B112LE-DMK NA B112KE-DN• NA B112KE-DMK NA B112KF-DN• NA B112KF-DMK NA B112KG-DN• NA B112KG-DMK NA B112KP-DN• NA B112KP-DMK NA B112KP-DN• NA B112KP-DMK NA B112KH-DN• NA B112KH-DMK NA B112LH-DN• NA B112LH-DMK NA B110AB-DN• NA B110AB-DMK NA B110CP-DN• NA B110CP-DMK NA B110AE-DN• NA B110AE-DMK NA B110EB-DN• NA B110EB-DMK NA B110FB-DN• NA B110FB-DMK NA B110FB-DN•H0 NA B110FB-DMKHO NA B110EE-DN• NA B110EE-DMK NA B110BB-DN• NA B110BB-DMK NA B110BB-DN•H0 NA B110BB-DMKHO NA B110HB-DN• NA B110HB-DMK NA B110HE-DN• NA B110HE-DMK NA B112KA-DN• NA B112KA-DMK NA B112KC-DN• NA B112KC-DMK NA B112LB-DN• NA B112LB-DMK NA B112LL-DN• NA B112LL-DMK NA B112KD-DN• NA B112KD-DMK

## Old article

FA 4550-•DN $\rightarrow$ FA 4550-KDM $\rightarrow$ FA 4551-•DN $\rightarrow$ FA 4551-KDM $\rightarrow$ FA $4552 \cdot$ DN $\rightarrow$ FA 4552-KDM $\rightarrow$ FA 4554-•DN $\rightarrow$ FA 4554-KDM $\rightarrow$ FA 4555-•DN $\rightarrow$ FA 4555-KDM $\rightarrow$ FA 4556-•DN $\rightarrow$ FA 4556-KDM $\rightarrow$ FA 4557-•DN $\rightarrow$ FA 4557-KDM $\rightarrow$ FA 4569-•DN $\rightarrow$ FA 4569-KDM $\rightarrow$ FA 4601-•DN $\rightarrow$ FA 4601-KDM $\rightarrow$ FA 4602-•DN $\rightarrow$ FA 4602-KDM $\rightarrow$ FA 4608-•DN $\rightarrow$ FA 4608-KDM $\rightarrow$ A 4610-•DN $\rightarrow$ FA 4610-KDM $\rightarrow$ FA 4611-•DN $\rightarrow$ FA 4611-KDM $\rightarrow$ FA 4612-•DN $\rightarrow$ FA 4612-KDM $\rightarrow$ FA 4613-•DN $\rightarrow$ FA 4613-KDM $\rightarrow$ FA 4615-•DN $\rightarrow$ FA 4615-KDM $\rightarrow$ FA 4617-•DN $\rightarrow$ FA 4617-KDM $\rightarrow$ FA 4630-•DN $\rightarrow$ FA 4630-KDM $\rightarrow$ FA 4631-•DN $\rightarrow$ FA 4631-KDM $\rightarrow$ FA 4633-•DN $\rightarrow$ FA 4633-KDM $\rightarrow$ FA 4634- DN $\rightarrow$ FA 4634-KDM $\rightarrow$ FA 4640-•DN $\rightarrow$ FA 4640-KDM $\rightarrow$ FA 4650-•DN $\rightarrow$ FA 4650-KDM $\rightarrow$ -A 4651-•DN $\rightarrow$ FA 4651-KDM $\rightarrow$ FA 4652-•DN $\rightarrow$ FA 4652-KDM $\rightarrow$ FA 4654-•DN $\rightarrow$ FA 4654-KDM $\rightarrow$ FA 4655-•DN $\rightarrow$ FA 4655-KDM $\rightarrow$ FA 4656-•DN $\rightarrow$ FA 4656-KDM $\rightarrow$ FA 4657-•DN $\rightarrow$ FA 4657-KDM $\rightarrow$ FA 4669- DN $\rightarrow$ FA 4669-KDM $\rightarrow$ A 4801-•DN $\rightarrow$ FA 4801-KDM $\rightarrow$ FA 4802-•DN $\rightarrow$ FA 4802-KDM $\rightarrow$ FA 4808-•DN $\rightarrow$ FA 4808-KDM $\rightarrow$ FA 4810- ${ }^{\text {DN }} \rightarrow$ FA 4810-KDM $\rightarrow$ FA 4811-•DN $\rightarrow$ FA 4811-KDM $\rightarrow$ FA 4812-•DN $\rightarrow$ FA 4812-KDM $\rightarrow$ FA 4813-•DN $\rightarrow$ FA 4813-KDM $\rightarrow$ FA 4815-•DN $\rightarrow$ FA 4815-KDM $\rightarrow$ FA 4817-•DN $\rightarrow$ A 4817-KDM $\rightarrow$ FA 4820-•DN $\rightarrow$ FA 4820-KDM $\rightarrow$

## New

 articleNA B112LE-DN• NA B112LE-DMK NA B112KE-DN• NA B112KE-DMK NA B112KF-DN• NA B112KF-DMK NA B112KG-DN• NA B112KG-DMK NA B112KP-DN• NA B112KP-DMK NA B112KP-DN• NA B112KP-DMK NA B112KH-DN• NA B112KH-DMK NA B112LH-DN• NA B112LH-DMK NA G110AB-DN• NA G110AB-DMK NA G110CP-DN• NA G110CP-DMK NA G110AE-DN• NA G110AE-DMK NA G110EB-DN• NA G110EB-DMK NA G110FB-DN• NA G110FB-DMK NA G110FB-DN•H0 NA G110FB-DMKH0 NA G110EE-DN• NA G110EE-DMK NA G110BB-DN• NA G110BB-DMK NA G110BB-DN•H0 NA G110BB-DMKH0 NA G112KA-DN• NA G112KA-DMK NA G112KC-DN• NA G112KC-DMK NA G112LB-DN• NA G112LB-DMK NA G112LL-DN• NA G112LL-DMK NA G112KD-DN• NA G112KD-DMK NA G112LE-DN• NA G112LE-DMK NA G112KE-DN• NA G112KE-DMK NA G112KF-DN• NA G112KF-DMK NA G112KG-DN• NA G112KG-DMK NA G112KP-DN• NA G112KP-DMK NA G112KP-DN• NA G112KP-DMK NA G112KH-DN• NA G112KH-DMK NA G112LH-DN• NA G112LH-DMK NA L110AB-DN• NA L110AB-DMK NA L110CP-DN• NA L110CP-DMK NA L110AE-DN• NA L110AE-DMK NA L110EB-DN• NA L110EB-DMK NA L110FB-DN• NA L110FB-DMK NA L110FB-DN•H0 NA L110FB-DMKH0 NA L110EE-DN• NA L110EE-DMK NA L110BB-DN• NA L110BB-DMK NA L110BB-DN•H0 NA L110BB-DMKH0 NA L110HB-DN• NA L110HB-DMK

Old article
FA 4825-•DN $\rightarrow$ FA 4825-KDM $\rightarrow$ FA 4830-•DN $\rightarrow$ FA 4830-KDM $\rightarrow$ FA 4831-•DN $\rightarrow$ FA 4831-KDM $\rightarrow$ FA 4833-•DN $\rightarrow$ FA 4833-KDM $\rightarrow$ FA 4834-•DN $\rightarrow$ FA 4834-KDM $\rightarrow$ FA 4840-•DN $\rightarrow$ FA 4840-KDM $\rightarrow$ FA 4850-•DN $\rightarrow$ FA 4850-KDM $\rightarrow$ FA 4851-•DN $\rightarrow$ FA 4851-KDM $\rightarrow$ FA 4852-•DN $\rightarrow$ FA 4852-KDM $\rightarrow$ FA 4854-•DN $\rightarrow$ FA 4854-KDM $\rightarrow$ FA 4855-•DN $\rightarrow$ FA 4855-KDM $\rightarrow$ FA 4856-•DN $\rightarrow$ FA 4856-KDM $\rightarrow$ FA 4857-•DN $\rightarrow$ FA 4857-KDM $\rightarrow$ FA 4869-•DN $\rightarrow$ FA 4869-KDM $\rightarrow$ FB 4101-•SN $\rightarrow$ FB 4101-KSM $\rightarrow$ FB 4102-•SN $\rightarrow$ FB 4102-KSM $\rightarrow$ FB 4108-•SN $\rightarrow$ FB 4108-KSM FB 4110-•SN $\rightarrow$ FB 4110-KSM $\rightarrow$ FB 4111-•SN $\rightarrow$ FB 4111-KSM $\rightarrow$ FB 4112-•SN $\rightarrow$ FB 4112-KSM $\rightarrow$ FB 4113-•SN $\rightarrow$ FB 4113-KSM $\rightarrow$ FB 4115-•SN $\rightarrow$ FB 4115-KSM $\rightarrow$ FB 4117-•SN $\rightarrow$ FB 4117-KSM $\rightarrow$ FB 4120-•SN $\rightarrow$ FB 4120-KSM $\rightarrow$ FB 4125-•SN $\rightarrow$ FB 4125-KSM $\rightarrow$

## Old <br> article

FB 4508-•SN $\rightarrow$ FB 4508-KSM $\rightarrow$ FB 4510-•SN $\rightarrow$ FB 4510-KSM $\rightarrow$ FB 4511-•SN $\rightarrow$ FB 4511-KSM $\rightarrow$ FB 4512-•SN $\rightarrow$ FB 4512-KSM $\rightarrow$ FB 4513-•SN $\rightarrow$ FB 4513-KSM $\rightarrow$ FB 4515-•SN $\rightarrow$ FB 4515-KSM $\rightarrow$ FB 4517-•SN $\rightarrow$ FB 4517-KSM $\rightarrow$ FB 4520-•SN $\rightarrow$ FB 4520-KSM $\rightarrow$ FB 4525-•SN $\rightarrow$ FB 4525-KSM $\rightarrow$ FB 4530-•SN $\rightarrow$ FB 4530-KSM $\rightarrow$ FB 4531-•SN $\rightarrow$ FB 4531-KSM $\rightarrow$ FB 4533-•SN $\rightarrow$ FB 4533-KSM $\rightarrow$ FB 4534-•SN $\rightarrow$ FB 4534-KSM $\rightarrow$ FB 4540-•SN $\rightarrow$ FB 4540-KSM $\rightarrow$ FB 4550-•SN $\rightarrow$ FB 4550-KSM $\rightarrow$ FB 4551-•SN $\rightarrow$ FB 4551-KSM $\rightarrow$ FB 4552-•SN $\rightarrow$ FB 4552-KSM $\rightarrow$ FB 4554-•SN $\rightarrow$ FB 4554-KSM $\rightarrow$ FB 4555-•SN $\rightarrow$ FB 4555-KSM $\rightarrow$ FB 4556-•SN $\rightarrow$ FB 4556-KSM $\rightarrow$ FB 4557-•SN $\rightarrow$ FB 4557-KSM $\rightarrow$ FB 4569-•SN $\rightarrow$ FB 4569-KSM $\rightarrow$ FB 4601-•SN $\rightarrow$ FB 4601-KSM $\rightarrow$ FB 4602-•SN $\rightarrow$ FB 4602-KSM $\rightarrow$ FB 4608-•SN $\rightarrow$ FB 4608-KSM $\rightarrow$ FB 4610-•SN $\rightarrow$ FB 4610-KSM $\rightarrow$ FB 4611-•SN $\rightarrow$ FB 4611-KSM $\rightarrow$ FB 4612-•SN $\rightarrow$ FB 4612-KSM $\rightarrow$ FB 4613-•SN $\rightarrow$ FB 4613-KSM $\rightarrow$ FB 4615-•SN $\rightarrow$ FB 4615-KSM $\rightarrow$ FB 4617-•SN $\rightarrow$ FB 4617-KSM $\rightarrow$ FB 4630-•SN $\rightarrow$ FB 4630-KSM $\rightarrow$ FB 4631-•SN $\rightarrow$ FB 4631-KSM $\rightarrow$ FB 4633-•SN $\rightarrow$ FB 4633-KSM $\rightarrow$ FB 4634-•SN $\rightarrow$ FB 4634-KSM $\rightarrow$ FB 4640-•SN $\rightarrow$ FB 4640-KSM $\rightarrow$ FB 4650-•SN $\rightarrow$ FB 4650-KSM $\rightarrow$ FB 4651-•SN $\rightarrow$ FB 4651-KSM $\rightarrow$ FB 4652-•SN $\rightarrow$ FB 4652-KSM $\rightarrow$ FB 4654-•SN $\rightarrow$ FB 4654-KSM $\rightarrow$ FB 4655-•SN $\rightarrow$ FB 4655-KSM $\rightarrow$ FB 4656-•SN $\rightarrow$

New
article
NB B110AE-DN• NB B110AE-SMK NB B110EB-DN• NB B110EB-SMK NB B110FB-DN• NB B110FB-SMK NB B110FB-DN•H0 NB B110FB-SMKH0 NB B110EE-DN• NB B110EE-SMK NB B110BB-DN• NB B110BB-SMK NB B110BB-DN•HO NB B110BB-SMKH0 NB B110HB-DN• NB B110HB-SMK NB B110HE-DN• NB B110HE-SMK NB B112KA-DN• NB B112KA-SMK NB B112KC-DN• NB B112KC-SMK NB B112LB-DN• NB B112LB-SMK NB B112LL-DN• NB B112LL-SMK NB B112KD-DN• NB B112KD-SMK NB B112LE-DN• NB B112LE-SMK NB B112KE-DN• NB B112KE-SMK NB B112KF-DN• NB B112KF-SMK NB B112KG-DN• NB B112KG-SMK NB B112KP-DN• NB B112KP-SMK NB B112KP-DN• NB B112KP-SMK NB B112KH-DN• NB B112KH-SMK NB B112LH-DN• NB B112LH-SMK NB G110AB-DN• NB G110AB-SMK NB G110CP-DN• NB G110CP-SMK NB G110AE-DN• NB G110AE-SMK NB G110EB-DN• NB G110EB-SMK NB G110FB-DN• NB G110FB-SMK NB G110FB-DN•HO NB G110FB-SMKH0 NB G110EE-DN• NB G110EE-SMK NB G110BB-DN• NB G110BB-SMK NB G110BB-DN•H0 NB G110BB-SMKH0 NB G112KA-DN• NB G112KA-SMK NB G112KC-DN• NB G112KC-SMK NB G112LB-DN NB G112LB-SMK NB G112LL-DN• NB G112LL-SMK NB G112KD-DN• NB G112KD-SMK NB G112LE-DN• NB G112LE-SMK NB G112KE-DN• NB G112KE-SMK NB G112KF-DN• NB G112KF-SMK NB G112KG-DN• NB G112KG-SMK NB G112KP-DN• NB G112KP-SMK NB G112KP-DN•

## Old article

 FB 4657-•SN $\rightarrow$ FB 4657-KSM $\rightarrow$ FB 4669-•SN $\rightarrow$ FB 4669-KSM $\rightarrow$ FB 4801-•SN $\rightarrow$ FB 4801-KSM $\rightarrow$ FB 4802-•SN $\rightarrow$ FB 4802-KSM $\rightarrow$ FB 4808-®SN $\rightarrow$ FB 4808-KSM $\rightarrow$ FB 4810-•SN $\rightarrow$ FB 4810-KSM $\rightarrow$ FB 4811-•SN $\rightarrow$ FB 4811-KSM $\rightarrow$ FB 4812-•SN $\rightarrow$ FB 4812-KSM $\rightarrow$ FB 4813-•SN $\rightarrow$ FB 4813-KSM $\rightarrow$ FB 4815-•SN $\rightarrow$ FB 4815-KSM $\rightarrow$ FB 4817-•SN $\rightarrow$ FB 4817-KSM $\rightarrow$ FB 4820-•SN $\rightarrow$ FB 4820-KSM $\rightarrow$ FB 4825-•SN $\rightarrow$ FB 4825-KSM $\rightarrow$ FB 4830-•SN $\rightarrow$ FB 4830-KSM $\rightarrow$ FB 4831-•SN $\rightarrow$ FB 4831-KSM $\rightarrow$ FB 4833-•SN $\rightarrow$ FB 4833-KSM $\rightarrow$ FB 4834-॰SN $\rightarrow$ FB 4834-KSM $\rightarrow$ FB 4840-•SN $\rightarrow$ FB 4840-KSM $\rightarrow$ FB 4850-•SN $\rightarrow$ FB 4850-KSM $\rightarrow$ FB 4851-•SN $\rightarrow$ FB 4851-KSM $\rightarrow$ FB 4852-•SN $\rightarrow$ FB 4852-KSM $\rightarrow$ FB 4854-•SN $\rightarrow$ FB 4854-KSM $\rightarrow$ FB 4855-•SN $\rightarrow$ FB 4855-KSM $\rightarrow$ FB 4856-•SN $\rightarrow$ FB 4856-KSM $\rightarrow$ FB 4857-•SN $\rightarrow$ FB 4857-KSM $\rightarrow$ FB 4869-•SN $\rightarrow$ FB 4869-KSM $\rightarrow$ FF 4101-•DN $\rightarrow$ FF 4101-•SN $\rightarrow$ FF 4101-KSM $\rightarrow$ FF 4101-KDM $\rightarrow$ FF 4102-•DN $\rightarrow$ FF 4102-•SN $\rightarrow$ FF 4102-KSM $\rightarrow$ FF 4102-KDM $\rightarrow$ FF 4108-•DN $\rightarrow$ FF 4108-•SN $\rightarrow$ FF 4108-KSM $\rightarrow$ FF 4108-KDM $\rightarrow$ FF 4110-•DN $\rightarrow$ FF 4110-•SN $\rightarrow$ FF 4110-KSM $\rightarrow$ FF 4110-KDM $\rightarrow$ FF 4111-•DN $\rightarrow$ FF 4111-•SN $\rightarrow$ FF 4111-KSM $\rightarrow$ FF 4111-KDM $\rightarrow$ FF 4112-•DN $\rightarrow$ FF 4112-•SN $\rightarrow$ FF 4112-KSM $\rightarrow$ FF 4112-KDM $\rightarrow$ FF 4113-•DN $\rightarrow$ FF 4113-•SN $\rightarrow$ FF 4113-KSM $\rightarrow$ FF 4113-KDM $\rightarrow$ FF 4115-•DN $\rightarrow$ FF 4115-•SN $\rightarrow$New
article
NB G112KP-SMK NB G112KH-DN• NB G112KH-SMK NB G112LH-DN• NB G112LH-SMK NB L110AB-DN• NB L110AB-SMK NB L110CP-DN• NB L110CP-SMK NB L110AE-DN• NB L110AE-SMK NB L110EB-DN• NB L110EB-SMK NB L110FB-DN• NB L110FB-SMK NB L110FB-DN•H0 NB L110FB-SMKHO NB L110EE-DN• NB L110EE-SMK NB L110BB-DN• NB L110BB-SMK NB L110BB-DN•HO NB L110BB-SMKH0 NB L110HB-DN• NB L110HB-SMK NB L110HE-DN• NB L110HE-SMK NB L112KA-DN• NB L112KA-SMK NB L112KC-DN• NB L112KC-SMK NB L112LB-DN• NB L112LB-SMK NB L112LL-DN• NB L112LL-SMK NB L112KD-DN• NB L112KD-SMK NB L112LE-DN• NB L112LE-SMK NB L112KE-DN• NB L112KE-SMK NB L112KF-DN• NB L112KF-SMK NB L112KG-DN• NB L112KG-SMK NB L112KP-DN• NB L112KP-SMK NB L112KP-DN• NB L112KP-SMK NB L112KH-DN• NB L112KH-SMK NB L112LH-DN• NB L112LH-SMK NF B110AB-DN• NF B110AB-DN• NF B110AB-SMK NF B110AB-DMK NF B110CP-DN• NF B110CP-DN NF B110CP-SMK NF B110CP-DMK NF B110AE-DN• NF B110AE-DN• NF B110AE-SMK NF B110AE-DMK NF B110EB-DN• NF B110EB-DN• NF B110EB-SMK NF B110EB-DMK NF B110FB-DN• NF B110FB-DN• NF B110FB-SMK NF B110FB-DMK NF B110FB-DN•H0 NF B110FB-DN•H0 NF B110FB-SMKHO NF B110FB-DMKH0 NF B110EE-DN• NF B110EE-DN NF B110EE-SMK NF B110EE-DMK NF B110BB-DN• NF B110BB-DN•

## Old <br> \section*{article}

FF 4115-KSM $\rightarrow$ FF 4115-KDM $\rightarrow$ FF 4117-•DN $\rightarrow$ FF 4117-•SN $\rightarrow$ FF 4117-KSM $\rightarrow$ FF 4117-KDM $\rightarrow$ FF 4120-•DN $\rightarrow$ FF 4120-•SN $\rightarrow$ FF 4120-KSM $\rightarrow$ FF 4120-KDM FF 4125-•DN $\rightarrow$ FF 4125-•SN $\rightarrow$ FF 4125-KSM $\rightarrow$ FF 4125-KDM $\rightarrow$ FF 4130-•DN $\rightarrow$ FF 4130-•SN $\rightarrow$ FF 4130-KSM $\rightarrow$ FF 4130-KDM $\rightarrow$ FF 4131-•DN $\rightarrow$ FF 4131-•SN $\rightarrow$ FF 4131-KSM $\rightarrow$ FF 4131-KDM $\rightarrow$ FF 4133-•DN $\rightarrow$ FF 4133-•SN $\rightarrow$ FF 4133-KSM $\rightarrow$ FF 4133-KDM $\rightarrow$ FF 4134-•DN $\rightarrow$ FF 4134- $\mathrm{SN} \rightarrow$ FF 4134-KSM $\rightarrow$ FF 4134-KDM $\rightarrow$ FF 4140-•DN $\rightarrow$ FF 4140-•SN $\rightarrow$ FF 4140-KSM $\rightarrow$ FF 4140-KDM $\rightarrow$ FF 4150-•DN $\rightarrow$ FF 4150-•SN $\rightarrow$ FF 4150-KSM $\rightarrow$ FF 4150-KDM $\rightarrow$ FF 4151-•DN $\rightarrow$ FF 4151-•SN $\rightarrow$ FF 4151-KSM $\rightarrow$ FF 4151-KDM $\rightarrow$ FF 4152-•DN $\rightarrow$ FF 4152-•SN $\rightarrow$

Old

## article

FF 4511-•SN $\rightarrow$ FF 4511-KSM $\rightarrow$ FF 4511-KDM $\rightarrow$ FF 4512-•DN $\rightarrow$ FF 4512-•SN $\rightarrow$ FF 4512-KSM $\rightarrow$ FF 4512-KDM $\rightarrow$ FF 4513-•DN $\rightarrow$ FF 4513-•SN $\rightarrow$ FF 4513-KSM $\rightarrow$ FF 4513-KDM $\rightarrow$ FF 4515-•DN $\rightarrow$ FF 4515-•SN $\rightarrow$ FF 4515-KSM $\rightarrow$ FF 4515-KDM $\rightarrow$ FF 4517-•DN $\rightarrow$ FF 4517-•SN $\rightarrow$ FF 4517-KSM $\rightarrow$ FF 4517-KDM $\rightarrow$ FF 4520-•DN $\rightarrow$ FF 4520-•SN $\rightarrow$ FF 4520-KSM $\rightarrow$ FF 4520-KDM $\rightarrow$ FF 4525-•DN $\rightarrow$ FF 4525-•SN $\rightarrow$ FF 4525-KSM $\rightarrow$ FF 4525-KDM $\rightarrow$ FF 4530-•DN $\rightarrow$ FF 4530-•SN $\rightarrow$ FF 4530-KSM $\rightarrow$ FF 4530-KDM $\rightarrow$ FF 4531-•DN $\rightarrow$
FF 4531-•SN $\rightarrow$
FF 4531-KSM $\rightarrow$ FF 4531-KDM $\rightarrow$ FF 4533-•DN $\rightarrow$ FF 4533-•SN $\rightarrow$ FF 4533-KSM $\rightarrow$ FF 4533-KDM $\rightarrow$ FF 4534-•DN $\rightarrow$ FF 4534-•SN $\rightarrow$ FF 4534-KSM $\rightarrow$ FF 4534-KDM $\rightarrow$ FF 4540-•DN $\rightarrow$ FF 4540-•SN $\rightarrow$ FF 4540-KSM $\rightarrow$ FF 4540-KDM $\rightarrow$ FF 4550-•DN $\rightarrow$ FF 4550-•SN $\rightarrow$
FF 4550-KSM $\rightarrow$
FF 4550-KDM $\rightarrow$
FF 4551-•DN $\rightarrow$
FF 4551-•SN $\rightarrow$
FF 4551-KSM $\rightarrow$ FF 4551-KDM $\rightarrow$ FF 4552-•DN $\rightarrow$
FF 4552-•SN $\rightarrow$
FF 4552-KSM $\rightarrow$ FF 4552-KDM $\rightarrow$
FF 4554-•DN $\rightarrow$
FF 4554-•SN $\rightarrow$
FF 4554-KSM $\rightarrow$
FF 4554-KDM $\rightarrow$
FF 4555-•DN $\rightarrow$
FF 4555-•SN $\rightarrow$
FF 4555-KSM $\rightarrow$
FF 4555-KDM $\rightarrow$
FF 4556-•DN $\rightarrow$
FF 4556-•SN $\rightarrow$
FF 4556-KSM $\rightarrow$
FF 4556-KDM $\rightarrow$
FF 4557-•DN $\rightarrow$
FF 4557-•SN $\rightarrow$
FF 4557-KSM $\rightarrow$
FF 4557-KDM $\rightarrow$
FF 4569-•DN $\rightarrow$
FF 4569-•SN $\rightarrow$
FF 4569-KSM $\rightarrow$ FF 4569-KDM $\rightarrow$ FF 4601-•DN $\rightarrow$

New article

NF B110FB-DN• NF B110FB-SMK NF B110FB-DMK NF B110FB-DN•H0 NF B110FB-DN•H0 NF B110FB-SMKH0 NF B110FB-DMKH0 NF B110EE-DN• NF B110EE-DN• NF B110EE-SMK NF B110EE-DMK NF B110BB-DN• NF B110BB-DN• NF B110BB-SMK NF B110BB-DMK NF B110BB-DN•HO NF B110BB-DN•H0 NF B110BB-SMKH0 NF B110BB-DMKHO NF B110HB-DN• NF B110HB-DN• NF B110HB-SMK NF B110HB-DMK NF B110HE-DN• NF B110HE-DN• NF B110HE-SMK NF B110HE-DMK NF B112KA-DN• NF B112KA-DN• NF B112KA-SMK NF B112KA-DMK NF B112KC-DN• NF B112KC-DN• NF B112KC-SMK NF B112KC-DMK NF B112LB-DN• NF B112LB-DN• NF B112LB-SMK NF B112LB-DMK NF B112LL-DN• NF B112LL-DN• NF B112LL-SMK NF B112LL-DMK NF B112KD-DN• NF B112KD-DN• NF B112KD-SMK NF B112KD-DMK NF B112LE-DN• NF B112LE-DN• NF B112LE-SMK NF B112LE-DMK NF B112KE-DN• NF B112KE-DN• NF B112KE-SMK NF B112KE-DMK NF B112KF-DN• NF B112KF-DN• NF B112KF-SMK NF B112KF-DMK NF B112KG-DN• NF B112KG-DN• NF B112KG-SMK NF B112KG-DMK NF B112KP-DN• NF B112KP-DN• NF B112KP-SMK NF B112KP-DMK NF B112KP-DN• NF B112KP-DN• NF B112KP-SMK NF B112KP-DMK NF B112KH-DN• NF B112KH-DN• NF B112KH-SMK NF B112KH-DMK NF B112LH-DN• NF B112LH-DN• NF B112LH-SMK NF B112LH-DMK NF G110AB-DN•

Old article FF 4601-•SN $\rightarrow$ FF 4601-KSM $\rightarrow$ FF 4601-KDM $\rightarrow$ FF 4602-•DN $\rightarrow$ FF 4602-•SN $\rightarrow$ FF 4602-KSM $\rightarrow$ FF 4602-KDM $\rightarrow$ FF 4608-•DN $\rightarrow$ FF 4608-•SN $\rightarrow$ FF 4608-KSM $\rightarrow$ FF 4608-KDM $\rightarrow$ FF 4610-•DN $\rightarrow$ FF 4610-•SN $\rightarrow$ FF 4610-KSM $\rightarrow$ FF 4610-KDM $\rightarrow$ FF 4611-•DN $\rightarrow$ FF 4611-•SN $\rightarrow$ FF 4611-KSM $\rightarrow$ FF 4611-KDM $\rightarrow$ FF 4612-•DN $\rightarrow$ FF 4612-•SN $\rightarrow$ FF 4612-KSM $\rightarrow$ FF 4612-KDM $\rightarrow$ FF 4613-•DN $\rightarrow$ FF 4613-•SN $\rightarrow$ FF 4613-KSM $\rightarrow$ FF 4613-KDM $\rightarrow$ FF 4615-•DN $\rightarrow$ FF 4615-•SN $\rightarrow$ FF 4615-KSM $\rightarrow$ FF 4615-KDM $\rightarrow$ FF 4617-•DN $\rightarrow$ FF 4617-•SN $\rightarrow$ FF 4617-KSM $\rightarrow$ FF 4617-KDM $\rightarrow$ FF 4630-•DN $\rightarrow$ FF 4630-•SN $\rightarrow$ FF 4630-KSM $\rightarrow$ FF 4630-KDM $\rightarrow$ FF 4631-•DN $\rightarrow$ FF 4631-•SN $\rightarrow$ FF 4631-KSM $\rightarrow$ FF 4631-KDM $\rightarrow$ FF 4633-•DN $\rightarrow$ FF 4633-•SN $\rightarrow$ FF 4633-KSM $\rightarrow$ FF 4633-KDM $\rightarrow$ FF 4634-•DN $\rightarrow$ FF 4634-•SN $\rightarrow$ FF 4634-KSM $\rightarrow$ FF 4634-KDM $\rightarrow$ FF 4640-•DN $\rightarrow$ FF 4640-•SN $\rightarrow$ FF 4640-KSM $\rightarrow$ FF 4640-KDM $\rightarrow$ FF 4650-•DN $\rightarrow$ FF 4650-•SN $\rightarrow$ FF 4650-KSM $\rightarrow$ FF 4650-KDM $\rightarrow$ FF 4651-•DN $\rightarrow$ FF 4651-•SN $\rightarrow$ FF 4651-KSM $\rightarrow$ FF 4651-KDM $\rightarrow$ FF 4652-•DN $\rightarrow$ FF 4652-•SN $\rightarrow$ FF 4652-KSM $\rightarrow$ FF 4652-KDM $\rightarrow$ FF 4654-•DN $\rightarrow$ FF 4654-•SN $\rightarrow$ FF 4654-KSM $\rightarrow$ FF 4654-KDM $\rightarrow$ FF 4655-•DN $\rightarrow$ FF 4655-•SN $\rightarrow$ FF 4655-KSM $\rightarrow$ FF 4655-KDM $\rightarrow$ FF 4656-•DN $\rightarrow$ FF 4656-•SN $\rightarrow$ FF 4656-KSM $\rightarrow$ FF 4656-KDM $\rightarrow$ FF 4657-•DN $\rightarrow$

## New

 articleNF G110AB-DN• NF G110AB-SMK NF G110AB-DMK NF G110CP-DN• NF G110CP-DN• NF G110CP-SMK NF G110CP-DMK NF G110AE-DN• NF G110AE-DN• NF G110AE-SMK NF G110AE-DMK NF G110EB-DN• NF G110EB-DN• NF G110EB-SMK NF G110EB-DMK NF G110FB-DN• NF G110FB-DN• NF G110FB-SMK NF G110FB-DMK NF G110FB-DN•H0 NF G110FB-DN•H0 NF G110FB-SMKH0 NF G110FB-DMKH0 NF G110EE-DN• NF G110EE-DN• NF G110EE-SMK NF G110EE-DMK NF G110BB-DN• NF G110BB-DN• NF G110BB-SMK NF G110BB-DMK NF G110BB-DN•H0 NF G110BB-DN•H0 NF G110BB-SMKH0 NF G110BB-DMKH0 NF G112KA-DN• NF G112KA-DN• NF G112KA-SMK NF G112KA-DMK NF G112KC-DN• NF G112KC-DN• NF G112KC-SMK NF G112KC-DMK NF G112LB-DN• NF G112LB-DN• NF G112LB-SMK NF G112LB-DMK NF G112LL-DN• NF G112LL-DN• NF G112LL-SMK NF G112LL-DMK NF G112KD-DN• NF G112KD-DN• NF G112KD-SMK NF G112KD-DMK NF G112LE-DN• NF G112LE-DN• NF G112LE-SMK NF G112LE-DMK NF G112KE-DN• NF G112KE-DN• NF G112KE-SMK NF G112KE-DMK NF G112KF-DN• NF G112KF-DN• NF G112KF-SMK NF G112KF-DMK NF G112KG-DN• NF G112KG-DN• NF G112KG-SMK NF G112KG-DMK NF G112KP-DN• NF G112KP-DN• NF G112KP-SMK NF G112KP-DMK NF G112KP-DN• NF G112KP-DN• NF G112KP-SMK NF G112KP-DMK NF G112KH-DN•

## Old article

FF 4657-•SN $\rightarrow$ FF 4657-KSM $\rightarrow$ FF 4657-KDM $\rightarrow$ FF 4669-•DN $\rightarrow$ FF 4669-•SN $\rightarrow$ FF 4669-KSM $\rightarrow$ FF 4669-KDM $\rightarrow$ FF 4801-•DN $\rightarrow$ FF 4801-•SN $\rightarrow$ FF 4801-KSM $\rightarrow$ FF 4801-KDM $\rightarrow$ FF 4802-•DN $\rightarrow$ FF 4802-•SN $\rightarrow$ FF 4802-KSM $\rightarrow$ FF 4802-KDM $\rightarrow$ FF 4808-•DN $\rightarrow$ FF 4808-•SN $\rightarrow$ FF 4808-KSM $\rightarrow$ FF 4808-KDM $\rightarrow$ FF 4810-•DN $\rightarrow$ FF 4810-•SN $\rightarrow$ FF 4810-KSM $\rightarrow$ FF 4810-KDM $\rightarrow$ FF 4811-•DN $\rightarrow$ FF 4811-•SN $\rightarrow$ FF 4811-KSM $\rightarrow$ FF 4811-KDM $\rightarrow$ FF 4812-•DN $\rightarrow$ FF 4812-•SN $\rightarrow$ FF 4812-KSM $\rightarrow$ FF 4812-KDM $\rightarrow$ FF 4813-•DN $\rightarrow$ FF 4813-•SN $\rightarrow$ FF 4813-KSM $\rightarrow$ FF 4813-KDM $\rightarrow$ FF 4815- ${ }^{-D N} \rightarrow$ FF 4815-•SN $\rightarrow$ FF 4815-KSM $\rightarrow$ FF 4815-KDM $\rightarrow$ FF 4817-•DN $\rightarrow$ FF 4817-•SN $\rightarrow$ FF 4817-KSM $\rightarrow$ FF 4817-KDM $\rightarrow$ FF 4820-•DN $\rightarrow$ FF 4820-•SN $\rightarrow$ FF 4820-KSM $\rightarrow$ FF 4820-KDM $\rightarrow$ FF 4825-•DN $\rightarrow$ FF 4825-•SN $\rightarrow$ FF 4825-KSM $\rightarrow$ FF 4825-KDM $\rightarrow$ FF 4830-•DN $\rightarrow$ FF 4830-•SN $\rightarrow$ FF 4830-KSM $\rightarrow$ FF 4830-KDM $\rightarrow$

Old article	New article
FF 4852-•SN $\rightarrow$	NF L112KF-DN•
FF 4852-KDM $\rightarrow$	NF L112KF-DMK
FF 4852-KSM $\rightarrow$	NF L112KF-SMK
FF 4854-•DN $\rightarrow$	NF L112KG-DN•
FF 4854-•SN $\rightarrow$	NF L112KG-DN•
FF 4854-KDM $\rightarrow$	NF L112KG-DMK
FF 4854-KSM $\rightarrow$	NF L112KG-SMK
FF 4855-•DN $\rightarrow$	NF L112KP-DN•
FF 4855-•SN $\rightarrow$	NF L112KP-DN•
FF 4855-KDM $\rightarrow$	NF L112KP-DMK
FF 4855-KSM $\rightarrow$	NF L112KP-SMK
FF 4856-•DN $\rightarrow$	NF L112KP-DN•
FF 4856-•SN $\rightarrow$	NF L112KP-DN•
FF 4856-KDM $\rightarrow$	NF L112KP-DMK
FF 4856-KSM $\rightarrow$	NF L112KP-SMK
FF 4857-•DN $\rightarrow$	NF L112KH-DN•
FF 4857-•SN $\rightarrow$	NF L112KH-DN•
FF 4857-KDM $\rightarrow$	NF L112KH-DMK
FF 4857-KSM $\rightarrow$	NF L112KH-SMK
FF 4869-•DN $\rightarrow$	NF L112LH-DN•
FF 4869-•SN $\rightarrow$	NF L112LH-DN•
FF 4869-KDM $\rightarrow$	NF L112LH-DMK
FF 4869-KSM $\rightarrow$	NF L112LH-SMK
FK $\bullet \cdots \bullet-W \rightarrow$	FK ••••-W3
FK $\bullet \bullet \bullet \bullet-W 1 \rightarrow$	FK ••••-W3
FK•15-1 $\rightarrow$	FK•15-M1R28
FK $\cdot 15-1 \mathrm{~W} 3 \rightarrow$	FK•15-W3M2R28
FM $\bullet \bullet \bullet-W \rightarrow$	FM ••••-W3
FM $\bullet \bullet \bullet-$ W1 $\rightarrow$	FM ••••-W3
FM •01-72 $\rightarrow$	FM •F1-M2
FM •15 $\rightarrow$	FM •15-M2R28
FM $15-1 \mathrm{M} 2-\mathrm{EX} 7 \rightarrow$	FM •15-M2R28-EX7
FM $\bullet 15-\mathrm{W} 3 \rightarrow$	FM •15-W3M2R28
FR $\bullet \bullet \bullet-W \rightarrow$	FR ••••-W3
FR $\bullet \bullet \bullet-$ W1 $\rightarrow$	FR ••••-W3
FR •01-72 $\rightarrow$	FR •F1-M2
FR •15-1 $\rightarrow$	FR •15-M2R28
FR •15-1W3 $\rightarrow$	FR •15-W3M2R28
FX $\bullet \bullet \bullet-W \rightarrow$	FX $\bullet \bullet \bullet-W 3$
FX $\bullet \bullet \bullet-W 1 \rightarrow$	FX ••••-W3
FX •01-72 $\rightarrow$	FX $\bullet$ F1-M2
FX •15-1 $\rightarrow$	FX •15-M2R28
FX •15-1W3 $\rightarrow$	FX •15-W3M2R28
FZ $\bullet \bullet \bullet-W \rightarrow$	FZ $\bullet \bullet \bullet-W 3$
FZ $\bullet \bullet \bullet-W 1 \rightarrow$	FZ ••••-W3
FZ •01-72 $\rightarrow$	FZ •F1-M2
FZ •15 $\rightarrow$	FZ •15-M2R28
FZ •15-W3 $\rightarrow$	FZ •15-W3M2R28
VF L••-1 $\rightarrow$	VF L••-R24
VF L••-2 $\rightarrow$	VF L••-R25
VF L••-3 $\rightarrow$	VF L••-R26
VF L••-4 $\rightarrow$	VF L••-R27
VF LE**-1 $\rightarrow$	VF LE••-R24
VF LE $\bullet \bullet-2 \rightarrow$	VF LE••-R25
VF LE $\bullet \bullet-3 \rightarrow$	VF LE••-R26
VF LE $\bullet \bullet-4 \rightarrow$	VF LE••-R27

Orders: Purchasing orders must be booked with us in writing (fax, e-mail). We reserve the right to not accept e-mail orders in case of missing characteristics necessary to correctly identify the sender or to not process them when we recognise virus presence or uncertain origin annexed.

Minimum order amount: Unless specifically agreed, for abroad countries the minimum amount of the order is 200 Euro. A 10 Euro extra fee will be applied to orders below 200 Euro delivered in Italy or San Marino. For deliveries abroad, the extra cost will be 30 Euro.

Prices: List prices does not includes VAT, custom taxes or other similar charges. Unless specifically agreed, prices are not binding and may change without prior notice.

Purchasing Quantity: Some products are supplied in packs. Total order quantity of these items must be multiple of the package content.
Order cancellation/changes: Orders variation could be accepted depending on status of manufacturing process. Changes or cancellation of special article orders will not be accepted.

Supply: The supply will include only what mentioned in the sales confirmation. We reserve the right to stop supply in case of changes in the customer's financial standing.

Delivery date: Delivery is specified on the order confirmation, which shows the expected week of shipment from Pizzato Elettrica, not the date of arrival at the customer's premises. This date is an approximate value and can not be used as a reason of the order non-fulfilment.

Packaging: Packaging is free. Over six boxes, pallets could be necessary for the transport.
Shipment: Good's transport is at customer's risk, even when delivery term is agreed at customer's site. It is a customer obligation to check the number of boxes delivered by the forwarder, to verify packaging damages and to control the weight declared in documents before accept the goods. Any discrepancy or mistakes should be reported by writing within eight days from the good's receipt. If case of Ex works deliveries it is responsibility of customer to verify that forwarder is authorized to the goods carriage in compliance with Italian law.

Warranty: The warranty has a validity of 12 months starting from the delivery date of the material. Warranty does not cover improper use of the material, negligence or wrong installation/assembling. The warranty does not cover parts subjected to wear or products used over the technological limits described in the general catalog, or items that have not received the right maintenance. Pizzato Elettrica engages itself to repair, replace parts or the complete product for those elements that present evident manufacturing defects, provided that they are still covered by warranty. Pizzato Elettrica is responsible only for the product's value and refund request are not accepted for machine down-time, repair or expenses for damages direct or indirect as consequence of products performance. It is a manufacturer's responsibility to evaluate the importance of chosen products and any malfunction consequences and adopt necessary technical measures to minimize consequences on machines and people safety (redundancy systems, self-controlled systems, etc). Warranty is subjected to the due payments respect.

Products: Products are subjected to technical improvements in any moment without prior notice.
Payment terms: Payments should be settled within the terms agreed in the sales confirmation. The type of payment is always at buyer's risk, regardless of the means chosen. In case of delayed payment, Pizzato Elettrica reserves the right to stop the delivery of current orders and charge the interest according to the European Directive 2011/7/EU. Technical or commercial claims does not give the right to stop due payments.

Returns: Any return should be previously authorised in writing. Pizzato Elettrica reserves the right to not accept the goods and send it back with freight collect, through the same way of forwarding. Returns have to be sent back within 3 months from the authorization date and no later. After this period, returns will not be accepted.

Ownership: The delivered products remain property of Pizzato Elettrica until full settlement of the invoices.
Proper Law: The Court of Vicenza shall have jurisdiction in any disputes.

## Notes



## Notes





Any information or application example, included the connection diagrams, described in this document are to be intended as purely descriptive. The choice and application of the products in conformity with the standards, in order to avoid damage to persons or goods, is the user's responsibility.
The drawings and data contained in this catalogue are not binding and we reserve the right, in order to improve the quality of our products, to modify them at any time without prior notice.
They are also our property and may be reproduced only with our written permission.
All rights reserved. © 2015 Copyright Pizzato Elettrica


General Catalogue Detection


General Catalogue HMI


General Catalogue
Safety Safety


General Catalogue
LIFT LIFT


DVD


Web www.pizzato.com

Pizzato Elettrica s.r.I. Via Torino, 1-36063 Marostica (VI) Italy
E-mail: info@pizzato.com - Web site: www.pizzato.com


[^0]:    - ${ }^{(1)}$ Actuator VF L35 can only be used in safety applications if adjusted to its max. length, as shown in figure beside. If you need an adjustable lever for safety applications, use the adjustable safety lever VF L56.
    ${ }^{(2)}$ The position switch obtained by assembling switch FD $\bullet 58-\mathrm{M} 2$ (e.g. FD 558-M2, FD $658-\mathrm{M} 2 \ldots$ ) with actuator VF L53 will not present the same travel diagrams and actuating forces as switch FD $\bullet 53-\mathrm{E} 11 \mathrm{M} 2 \mathrm{~V} 9$ (e.g. FD 553-E11M2V9, FD 653-E11M2V9...).
    ${ }^{(3)}$ If installed with switch FD $\bullet 58-\mathrm{M} 2$ (e.g. FC 558-M2, FD 658-M2 ...) the actuator could mechanically interfere with the housing of the switch.
    The interference could happen or not according to the actuator and the head fixing position.
    ${ }^{(4)}$ The actuator cannot be rotated to the inside because it will mechanically interfere with the switch head.
    

[^1]:    ${ }^{(1)}$ Actuator VF L35 can only be used in safety applications if adjusted to its max. length, as shown in figure beside. If you need an adjustable lever for safety applications, use the adjustable safety lever VF L56.
    ${ }^{(2)}$ The position switch obtained by assembling switch FP •58-M2 (e.g. FP 558-M2, FP 658-M2...) with actuator VF L53 will not present the same travel diagrams and actuating forces as switch FP •53-E11M2V9 (e.g. FP 553-E11M2V9, FP 653-E11M2V9...).
    ${ }^{(3)}$ If installed with switch FP $\bullet 58-\mathrm{M} 2($ e.g. FP 558-M2, FP $658-\mathrm{M} 2 \ldots$ ) the actuator could mechanically interfere with the housing of the switch.
    The interference could happen or not according to the actuator and the head fixing position.
    ${ }^{(4)}$ The actuator cannot be rotated to the inside because it will mechanically interfere with the switch head.
    

[^2]:    ${ }^{(1)}$ Actuator VF L35 can only be used in safety applications if adjusted to its max. length, as shown in figure beside. If you need an adjustable lever for safety applications, use the adjustable safety lever VF L56.
    ${ }^{(2)}$ The position switch obtained by assembling switch FL $\bullet 58-\mathrm{M} 2$ (e.g. FL 558-M2, FL 658-M2...) with actuator VF L53 will not present the same travel diagrams and actuating forces as switch FL •53-E11M2V9 (e.g. FL 553-E11M2V9, FL 653-E11M2V9...).
    ${ }^{(3)}$ If installed with switch FL $\bullet 58-\mathrm{M} 2($ e.g. FL 558-M2, FL $658-\mathrm{M} 2 \ldots$ ) the actuator could mechanically interfere with the housing of the switch.
    The interference could happen or not according to the actuator and the head fixing position.
    ${ }^{(4)}$ The actuator cannot be rotated to the inside because it will mechanically interfere with the switch head.
    

[^3]:    ${ }^{(1)}$ Actuator VF L35 can only be used in safety applications if adjusted to its max. length, as shown in figure beside. If you need an adjustable lever for safety applications, use the adjustable safety lever VF L56.
    ${ }^{(2)}$ The position switch obtained by assembling switch FC •58-M2 (e.g. FC 358-M2, FC 3358-M2 ...) with actuator VF L53 will not present the same
    travel diagrams and actuating forces as switch FC $\bullet 53-E 11 \mathrm{M} 2$ (e.g. FC 353-E11M2, FC 3353-E11M2V9...).
    ${ }^{(3)}$ If installed with switch FC $\bullet 58-\mathrm{M} 2$ (e.g. FC 358-M2, FC $3358-\mathrm{M} 2 \ldots$ ) the actuator could mechanically interfere with the housing of the switch. $\%$ The interference could happen or not according to the actuator and the head fixing position.
    ${ }^{(4)}$ The actuator cannot be rotated to the inside because it will mechanically interfere with the switch head.

[^4]:    - ${ }^{(1)}$ Actuator VF LE55 can only be used in safety applications if adjusted to its max. length, as shown in figure beside. If you need an adjustable lever for safety applications, use the adjustable safety lever VF LE56.
    - (2) The position switch obtained by assembling switch FM •38-M2 (e.g. FM 538-M2, FM 638-M2...) with actuator VF L53 will not present the same travel diagrams and actuating forces as switch FM •53-E0M2V9 (e.g. FM 553-E0M2V9, FM 653-E0M2V9...).
    - (4) The actuator cannot be rotated to the inside because it will mechanically interfere with the switch head.
    

[^5]:    Accessories See page 225

[^6]:    § If not expressly indicated in this chapter, for correct installation and utilization of all articles see chapter utilization requirements from page 235 to page 246.

[^7]:    Accessories See page 225

[^8]:    3 Clamping screw plates for different diameter cables
    

    These clamping screw plates have a particular "roofing tile" structure and are connected loosely to the clamping screw. In this way, during the wires fixing, the clamping screw plate is able to suit to cables of different diameter (see picture) and tends to tighten the wires toward the screw instead of permitting them to escape towards the outside.

[^9]:    Excerpt from EN ISO 14119 -Table 1

